146
Views
10
CrossRef citations to date
0
Altmetric
Articles

Compared the physiological response of two petroleum-tolerant contrasting plants to petroleum stress

, , , , , , & show all

References

  • Brakorenko NN, Korotchenko TV. 2016. Impact of petroleum products on soil composition and physical-chemical properties. IOP Conf Ser Earth Environ Sci. 33:012028. doi:10.1088/1755-1315/33/1/012028.
  • Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. In: Iqbal N, Nazar R, Khan NA, editors. Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, p. 155–66.
  • Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M. 1993. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 15:353–63. doi:10.1016/0891-5849(93)90035-S. PMID:8225017.
  • Durak I, Yurtarslanl Z, Canbolat O, Akyol O. 1993. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta Int J Clin Chem. 214:103–4. doi:10.1016/0009-8981(93)90307-P.
  • Georgiou CD, Grintzalis K, Zervoudakis G, Papapostolou I. 2008. Mechanism of coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Anal Bioanal Chem. 391:391–403. doi:10.1007/s00216-008-1996-x. PMID:18327568.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 28(3):367–74. doi:10.1016/j.biotechadv.2010.02.001. PMID:20149857.
  • Hayat S, Qaiser H, Mohammed NA, Arif SW, John P, Aqil A. 2012. Role of proline under changing environments. Plant Signaling & Behavior. 7:1456–66. doi:10.4161/psb.21949.
  • Hossain MA, Ashrafuzzaman M, Ismail MR. 2011. Salinity triggers proline synthesis in peanut leaves. Maejo Int J Sci Technol. 5:159–68.
  • Jebara S, Jebara M, Limam F, Aouani ME. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol. 162:929–36. doi:10.1016/j.jplph.2004.10.005. PMID:16146319.
  • Jha MN, Levy J, Gao Y. 2008. Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors. 8:236–55. doi:10.3390/s8010236. PMID:27879706.
  • Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biol Plant. 59:609–19. doi:10.1007/s10535-015-0549-3.
  • Kaur N, Erickson TE, Ball AS, Ryan MH. 2017. A review of germination and early growth as a proxy for plant fitness under petrogenic contamination – knowledge gaps and recommendations. Sci Total Environ. 603–604:728–44. doi:10.1016/j.scitotenv.2017.02.179. PMID:28372821.
  • Kavi Kishor PB, Sreenivasulu N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 37:300–11. doi:10.1111/pce.12157. PMID:23790054.
  • Khodarahmpour Z, Soltani A. 2013. Selection of alfalfa (Medicago sativa L.) cultivars for drought stress tolerance through germination indices. Res Crops. 14:296–303.
  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact. 17:6–15. doi:10.1094/MPMI.2004.17.1.6. PMID:14714863.
  • Macek T, Macková M, Káš J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv. 18:23–34. doi:10.1016/S0734-9750(99)00034-8. PMID:14538117.
  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci. 4:580–5.
  • Merkl N, Schultze-Kraft R, Infante C. 2005. Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut. 138:86–91. doi:10.1016/j.envpol.2005.02.023. PMID:15894414.
  • Mishra S, Jyot J, Kuhad RC, Lal B. 2001. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol. 43:328–35. doi:10.1007/s002840010311. PMID:11688796.
  • Nie M, Yang Q, Jiang LF, Fang CM, Chen JK, Li B. 2010. Do plants modulate biomass allocation in response to petroleum pollution? Biol Lett. 6:811–4. doi:10.1098/rsbl.2010.0261. PMID:20484231.
  • Parvaiz A, Satyawati S. 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ. 54:89–99. doi:10.17221/2774-PSE.
  • Peng S, Zhou Q, Cai Z, Zhang Z. 2009a. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater. 168:1490–6. doi:10.1016/j.jhazmat.2009.03.036.
  • Peng S, Zhou Q, Zhang H, Shi R. 2009b. Responses of seed germination of 8 ornamental plants to petroleum contamination. Acta Sci Circumstantiae. 29:786–90. doi:10.13671/j.hjkxxb.2009.04.023.
  • Pezeshki SR, DeLaune RD, Jugsujinda A. 2001. The effects of crude oil and the effectiveness of cleaner application following oiling on US Gulf of Mexico coastal marsh plants. Environ Pollut. 112:483–9. doi:10.1016/S0269-7491(00)00133-0.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214. PMID:15862088.
  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ. 1998. Potential of phytoremediation for treatment of PAHs in soil at MGP Sites. J Soil Contam. 7:467–80. doi:10.1080/10588339891334401.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49:643–68. doi:10.1146/annurev.arplant.49.1.643. PMID:15012249.
  • Segura A, Rodriguez-Conde S, Ramos C, Ramos JL. 2009. Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol. 2:452–64. doi:10.1111/j.1751-7915.2009.00113.x. PMID:21255277.
  • Sethy SK, Ghosh S. 2013. Effect of heavy metals on germination of seeds. J Nat Sci Biol Med. 4:272–5. doi:10.4103/0976-9668.116964. PMID:24082715.
  • Shalata A, Mittova V, Volokita M, Guy M, Tal M. 2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant. 112:487–94. doi:10.1034/j.1399-3054.2001.1120405.x. PMID:11473708.
  • Wang W, He H, Guan Y, Li WX, Zhang ZH, Zu YG. 2009. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by DMSO and acetone-extraction methods. Bull Bot Res. 29:224–9.
  • Wenzel WW. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 321:385–408. doi:10.1007/s11104-008-9686-1.
  • Werner A, Stelzer R. 1990. Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environ. 13:243–55. doi:10.1111/j.1365-3040.1990.tb01309.x.
  • Wren JJ, Wiggall PH. 1965. An improved colorimetric method for the determination of proline in the presence of other ninhydrin-positive compounds. Biochem J. 94:216–20. doi:10.1042/bj0940216. PMID:14342233.
  • Zanaroli G, Toro SD, Todaro D, Varese GC, Bertolotto A, Fava F. 2010. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Fact. 9:1–13. doi:10.1186/1475-2859-9-10. PMID:20067629.
  • Zhang J, Fan SK, Yang JC, Du XM, Li FS, Hou H. 2014. Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set. Sci Total Environ. 476–477:258–65. doi:10.1016/j.scitotenv.2014.01.023. PMID:24468500.
  • Zhang Z, Zhou Q, Peng S, Cai Z. 2010. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ. 408:5600–5. doi:10.1016/j.scitotenv.2010.08.003. PMID:20810149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.