248
Views
12
CrossRef citations to date
0
Altmetric
Articles

Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils

, , , , &

References

  • An CJ, Huang GH, Wei J, Yu H. 2011. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res. 45(17):5501–5510. doi:10.1016/j.watres.2011.08.011. PMID:21890166.
  • Cachada A, Pato P, Rocha-Santos T, da Silva EF, Duarte AC. 2012. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ. 430:184–192. doi:10.1016/j.scitotenv.2012.04.075. PMID:22652008.
  • Cao MH, Hu Y, Sun Q, Wang LL, Chen J, Lu XH. 2013. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Environ Pollut. 174:93–99. doi:10.1016/j.envpol.2012.11.015. PMID:23246752.
  • Cederlund H, Borjesson E. 2016. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil? J Hazard Mater. 314:312–317. doi:10.1016/j.jhazmat.2016.04.061. PMID:27149400.
  • Chen TR, Liu XY, Zhang XY, Chen X, Tao KY, Hu XX. 2016a. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. Chemosphere. 154:515–520. doi:10.1016/j.chemosphere.2016.03.127.
  • Chen TR, Liu XY, Zhang XY, Hou YY, Chen X, Tao KY. 2016b. Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application. J Soil Sediment. 16(8):2090–2096. doi:10.1007/s11368-016-1394-5.
  • Chirakkara RA, Cameselle C, Reddy KR. 2016. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Bio. 15(2):299–326. doi:10.1007/s11157-016-9391-0.
  • Dmuchowski W, Gozdowski D, Bragoszewska P, Baczewska AH, Suwara I. 2014. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol Eng. 71:32–5. doi:10.1016/j.ecoleng.2014.07.053.
  • Evangelou MWH, Ebel M, Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68(6):989–1003. doi:10.1016/j.chemosphere.2007.01.062. PMID:17349677.
  • Freitas EVD, do Nascimento CWA. 2009. The use of NTA for lead phytoextraction from soil from a battery recycling site. J Hazard Mater. 171(1–3):833–7. doi:10.1016/j.jhazmat.2009.06.069. PMID:19595509.
  • Gao YZ, Ling WT, Zhu LZ, Zhao BW, Zheng QS. 2007. Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: Potential and assessment. Pedosphere. 17(4):409–418. doi:10.1016/S1002-0160(07)60050-2.
  • Gerhardt KE, Gerwing PD, Greenberg BM. 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci. 256:170–185. doi:10.1016/j.plantsci.2016.11.016. PMID:28167031.
  • Gong P, Wilke BM, Strozzi E, Fleischmann S. 2001. Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere. 44(3):491–500. doi:10.1016/S0045-6535(00)00280-0. PMID:11459155.
  • Hou YY, Liu XY, Zhang XY, Chen X, Tao KY, Chen XP, Liang X, He CQ. 2015. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ Sci Pollut R. 22(22):17780–17788. doi:10.1007/s11356-015-4995-4.
  • Lestan D, Luo CL, Li XD. 2008. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ Pollut. 153(1):3–13. doi:10.1016/j.envpol.2007.11.015. PMID:18155817.
  • Liao CJ, Liang XJ, Lu GN, Thai T, Xu WD, Dang Z. 2015. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L). Ecotox Environ Safe. 112:1–6. doi:10.1016/j.ecoenv.2014.10.025.
  • Liu FH, Zhang XY, Liu XY, Chen XP, Liang X, He CQ, Wei J, Xu G. 2013. Alkyl Polyglucoside (APG) Amendment for Improving the Phytoremediation of Pb-PAH contaminated soil by the aquatic plant Scirpus triqueter. Soil Sediment Contam. 22(8):1013–1027. doi:10.1080/15320383.2013.770444.
  • Lou YH, Luo HJ, Hu T, Li HY, Fu JM. 2013. Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology. 22(2):207–214. doi:10.1007/s10646-012-1017-x. PMID:23149678.
  • Lu M, Zhang ZZ, Wang JX, Zhang M, Xu YX, Wu XJ. 2014. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol. 48(2):1158–1165. doi:10.1021/es403337t. PMID:24383577.
  • Malar S, Manikandan R, Favas PJC, Sahi SV, Venkatachalam P. 2014. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation. Ecotox Environ Safe. 108:249–257. doi:10.1016/j.ecoenv.2014.05.018.
  • Mendoza-Carranza M, Sepulveda-Lozada A, Dias-Ferreira C, Geissen V. 2016. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environ Pollut. 210:155–165. doi:10.1016/j.envpol.2015.12.014. PMID:26708770.
  • Meng LA, Qiao M, Arp HPH. 2011. Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono- and mixed cultures. J Soil Sediment. 11(3):482–490. doi:10.1007/s11368-010-0319-y.
  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F. 2009. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytorem. 11:558–574. doi:10.1080/15226510902717580.
  • Muratova AY, Golubev SN, Dubrovskaya EV, Pozdnyakova NN, Panchenko LV, Pleshakova EV, Chernyshova MP, Turkovskaya OV. 2012. Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Appl Soil Ecol. 56:51–57. doi:10.1016/j.apsoil.2012.01.002.
  • Perez RM, Cabrera G, Gomez JM, Abalos A, Cantero D. 2010. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J Hazard Mater. 182(1–3):896–902. doi:10.1016/j.jhazmat.2010.07.003. PMID:20667656.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214. PMID:15862088.
  • Ramamurthy AS, Memarian R. 2012. Phytoremediation of mixed soil contaminants. Water Air Soil Poll. 223(2):511–518. doi:10.1007/s11270-011-0878-6.
  • Romeh AA. 2015. Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotox Environ Safe. 117:124–131. doi:10.1016/j.ecoenv.2015.03.029.
  • Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Chateauneuf G, Sura C, Gallipeau C, et al. 2005. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil. 272(1–2):277–290. doi:10.1007/s11104-004-5295-9.
  • Ruley AT, Sharma NC, Sahi SV. 2004. Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Bioch. 42(11):899–906. doi:10.1016/j.plaphy.2004.12.001.
  • Siddiqui MM, Abbasi BH, Ahmad N, Ali M, Mahmood T. 2014. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicol Ind Health. 30(3):238–249. doi:10.1177/0748233712452605. PMID:22872632.
  • Styrczula P, Mozdzer E. 2014. Interaction of organic fertilisation with multi-component mineral fertilisers and their effect on the content of microelements in perennial ryegrass. J Elementol. 19(2):519–531.
  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotox Environ Safe. 126:138–146. doi:10.1016/j.ecoenv.2015.12.031.
  • Wang Q, Liu XY, Zhang XY, Hou YY, Hu XX, Liang X, Chen XP. 2016. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environ Sci Pollut R. 23(6):5705–5711. doi:10.1007/s11356-015-5784-9.
  • Wang Y, Tian ZJ, Zhu HL, Cheng ZN, Kang ML, Luo CL, Li J, Zhang G. 2012. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: Concentration, distribution, source, and risk assessment. Sci Total Environ. 439:187–193. doi:10.1016/j.scitotenv.2012.08.018. PMID:23063924.
  • Xie MJ, Yan CL, Ye J, Wei LL. 2009. Impact of phenanthrene on organic acids secretion and accumulation by perennial Ryegrass, Lolium perenne L., Root. B Environ Contam Tox. 83(1):75–80. doi:10.1007/s00128-009-9775-8.
  • Yuan SH, Wu XF, Wan JZ, Long HY, Lu XH, Wu XH, Chen J. 2010. Enhanced washing of HCB and Zn from aged sediments by TX-100 and EDTA mixed solutions. Geoderma. 156(3–4):119–125. doi:10.1016/j.geoderma.2010.02.006.
  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R. 2015. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotox Environ Safe. 120:310–317. doi:10.1016/j.ecoenv.2015.06.020.
  • Zhang FB, Gu WJ, Xu PZ, Tang SH, Xie KZ, Huang X, Huang QY. 2011. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes. Waste Manage. 31(6):1333–1338. doi:10.1016/j.wasman.2011.02.002.
  • Zhang H, Chen XP, He CQ, Liang X, Oh K, Liu XY, Lei YR. 2015. Use of energy crop (Ricinus communis L.) for phytoextraction of heavy metals assisted with citric acid. Int J Phytorem. 17(7):632–639. doi:10.1080/15226514.2014.935287.
  • Zhang SL, Zhao SC, Gu J. 2004. Impact of soil diesel oil pollution on seed germination of alfalfa. Environ Sci Technol. 27(5):88–89.
  • Zhang ZZ, Wang HJ, Li CL. 2009. Inhibiting water evaporation of sandy soil by the soil particles modified with Japanese wax. J Forestry Res. 20(1):59–62. doi:10.1007/s11676-009-0011-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.