103
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of basal fertilizer and perlite amendment on growth of zinnia and its remediation capacity in oil-contaminated soils

, , &

References

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremed. 14:35–47. doi:10.1080/15226514.2011.552928. PMID: 22567693.
  • Alkorta I, Garbisu C. 2001. Phytoremediation of organic contaminants in soils. Bioresour Technol. 79:273–276. doi:10.1016/S0960-8524(01)00016-5.
  • Basumatary B, Saikia R, Bordoloi S, Das HC, Sarma HP. 2012. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India. J Chem Technol Biotechnol. 87:1329–1334. doi:10.1002/jctb.3773.
  • Bordoloi S, Basumatary B, Saikia R, Das HC. 2012. Axonopus compressus (Sw.) P. Beauv. A native grass species for phytoremediation of hydrocarbon-contaminated soil in Assam, India. J Chem Technol Biotechnol. 87:1335–1341. doi:10.1002/jctb.3765.
  • Bowen GD. 1969. Nutrient status effects on loss of amides and amino acids from pine roots. Plant Soil. 24:121–127.
  • Chioma BC, Christopher CA, Evan MF. 2017. Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: a case study of Ikarama Community, Bayelsa, Nigeria. Biotechnology. 7(2):152.
  • Dowling DN, Doty SL. 2009. Improving phytoremediation through biotechnology. Curr Opin Biotechnol. 20(2):204–206. doi:10.1016/j.copbio.2009.03.007. PMID: 19361978.
  • Eman K, Andrew SB. 2017. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 3(1):25–49. doi:10.3934/microbiol.2017.1.25.
  • Gaskin S, Soole K, Bentham R. 2010. Rhizoremediation of hydrocarbon-contaminated soil using Australian native grasses. Sci Total Environ. 408:3683–3688. doi:10.1016/j.scitotenv.2010.05.004. PMID: 20569970.
  • Hall C, Tharakan P, Hallock J, Cleveland C, Jefferson M. 2003. Hydrocarbons and the evolution of human culture. Nature. 426(6964):318–322.
  • Hayase K. 1992. Measurement of enzyme activity in soil. In Experimental methods in soil microbiology. New Edition. Tokyo: Youken-dou.
  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbon (TPH) from soil. Microchem J. 81(1):139–147. doi:10.1016/j.microc.2005.01.009.
  • Hutchinson SL, Banks MK, Schwab AP. 2001. Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. J Environ Qual. 30:395–403. doi:10.2134/jeq2001.302395x. PMID: 11285899.
  • Ikeura H, Ozawa S, Tamaki M. 2016. Varietal differences in Zinnia hybrid for remediation in oil-contaminated soil. J Int Sci Publ Ecol Safety. 10:265–272.
  • Issoufi I, Rhykerd RL, Smiciklas KD. 2006. Seedling growth of agronomic crops in crude oil contaminated soil. J Agro Crop Sci. 317:310–318. doi:10.1111/j1439-037X.2006.00212.x.
  • Joner EA, Corgie SC, Amellal N, Leyval C. 2002. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol Biochem. 34:859–864. doi:10.1016/S0038-0717(02)00018-4.
  • Kaimi E, Mukaidani T, Miyoshi S, Tamaki M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot. 55:110–119. doi:10.1016/j.envexpbot.2004.10.005.
  • Kaimi E, Mukaidani T, Tamaki M. 2007. Effect of Rhizodegradation in Diesel-contaminated soil under different soil conditions. Plant Product Sci. 10:105–111. doi:10.1626/pps.10.105.
  • Kirk JL, Klironomos JN, Lee H, Trevors JT. 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut. 133:455–465. doi:10.1016/j.envpol.2004.06.002. PMID: 15519721.
  • Lin Q, Mendelssohn IA. 1998. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng. 10:263–274. doi:10.1016/S0925-8574(98)00015-9.
  • López-Martínez S, Gallegos-Martínez ME, Pérez-Flores LJ, Gutiérrez-Rojas M. 2008. Contaminated soil phytoremediation by Cyperus Laxus Lam. cytochrome P450 erod-activity induced by hydrocarbonsin roots. Int J Phytoremed. 10:289–301. doi:10.1080/15226510802096069.
  • Lu M, Zhang Z, Sun S, Wei X, Wang Q, Su, Y. 2010. The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water Air Soil Pollut. 209:181–189. doi:10.1007/s11270-009-0190-x.
  • Margesin R, Hammerle M, Tscherko D. 2007. Microbial activity and community composition during bioremediation of diesel oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol. 53:259–269. doi:10.1007/s00248-006-9136-7. PMID: 17265002.
  • Merkl N, Schultze-Kraft R, Arias M. 2005a. Influence of fertilizer levels on phytoremediation of crude oil with the tropical pasture grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. Int J Phytoremed. 7:217–230. doi:10.1080/16226510500215662.
  • Merkl N, Schultze-Kraf R, Infante C. 2005b. Asseeement of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 165:195–209. doi:10.1007/s11270-005-4979-y.
  • Muratova AY, Golubev SN, Dubrovskaya EV, Pozdnyakova NN, Panchenko LV, Pleshakova EV, Chernyshova MP, Turkovskaya OV. 2012. Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Appl Soil Ecol. 56:51–57. doi:10.1016/j.apsoil.2012.01.002.
  • Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z. 2000. Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng. 126:483–490. doi:10.1061/(ASCE)0733-9372(2000)126:6(483).
  • Ozawa S, Ikeura H, Kaimi E, Tamaki M. 2014. Selection of the most effective cultivar of genus zinnia flowers for phytoremediation of oil-contaminated soil. Int J Plant Soil Sci. 4:61–71. doi:10.9734/IJPSS/2015/13035.
  • Peña-Castro JM, Barrera-Figueroa BE, Fernández-Linares L, Ruiz-Medrano R, Xoconostle-Cázares B. 2006. Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Sci. 170(4):724–731. doi:10.1016/j.plantsci.2005.11.004.
  • Peng S, Zhou Q, Cai Z, Zhang Z. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater. 168:1490–1496. doi:10.1016/j.jhazmat.2009.03.036. PMID: 19346069.
  • Phillips LA, Greer CW, Germida JJ. 2006. Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem. 38(9):2823–2833. doi:10.1016/j.soilbio.2006.04.038.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214. PMID: 15862088.
  • Shirdam R, Zand AD, Bidhendi GN, Mehrdadi N. 2008. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection. 89:21–29. doi:10.7202/000379ar.
  • Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng. 18:647–658. doi:10.1016/S0925-8574(02)00026-5.
  • The Geo-Environmental Protection Center. 2006. The TPH test methods using GC-FID, Guidelines against oil pollution by the ministry of environment. Tokyo: The Chemical Daily Co., Ltd. p. 99–115.
  • Wolinska A, Stepniewska. 2012. Dehydrogenase activity in the soil environment. In: Rosa Angela Canuto, editor. Dehydrogenase. p. 183–210. In Tech. Available at http://cdn.intechopen.com/pdfs/40938/InTech.
  • Zhang C, Qixing Z, Peng S, Kenan L. 2010. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J Hazard Mater. 183:731–737. doi:10.1016/j.jhazmat.2010.07.087. PMID: 20724074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.