569
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils

, &

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK. 2012. Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol. 30(8):416–420. doi:10.1016/j.tibtech.2012.04.004.
  • Adams GO, Prekeyi TF, Samson EO, Igelenyah E. 2015. Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegrad. 3(1):28–39. doi:10.12691/ijebb-3-1-5.
  • Adieze IE, Orji JC, Nwabueze RN, Onyeze GOC. 2012. Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. Int J Environ Stud. 69(3):490–500. doi:10.1080/00207233.2012.665785.
  • Agarry SE, Aremu MO, Aworanti OA. 2013. Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies. Soil Sediment Contam Int J. 22(7):223–245. doi:10.1080/15320383.2013.768204.
  • Al-Bahry A, Elshafie Y, Al-Wahaibi E. 2013. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery. J Microbiol Biotechnol. 23(1):106–117. 10.4014/jmb.1204.04021.
  • Alexander M. 1995. How toxic are toxic chemicals in soil. Environ Sci Technol. 29(11):2713–2271. doi:10.1021/es00011a003
  • Alexander M. 2000. Aging, bioavailability and over stimulation of risk from environmental pollutants. Environ Sci Technol. 34:4259–4265. doi: 10.1021/es001069+.
  • Amadi A, Abbey SD, Nma A. 1996. Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria. Water Air Soil Pollut. 86(1–4):1–11. doi:10.1007/BF00279142.
  • American Petroleum Institute (API). 2010. Residue hydrocarbon wastes from petroleum refining. [accessed 2010, Aug 30]. http://www.epa.gov/hpv/pubs/summaries/recpethy/c14755ca1.pdf.
  • Arey j, Atkinson R. 2003. Photochemical reactions of polycyclic aromatic hydrocarbons in the atmosphere. In: PET. Douben, editor. An Eco toxicological perspective. West Sussex, England: Wiley and Sons. p.47–63.
  • Asemoloye MD, Ahmad R, Jonathan SG. 2017a. Synergistic action of rhizospheric fungi with megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere. 187:1–12. doi:10.1016/j.chemosphere.2017.07.158.
  • Asemoloye MD, Ahmad R, Jonathan SG. 2017c. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS One. 12(8):e0183373. doi:10.1371/journal.pone.0183373
  • Asemoloye MD, Ahmad R, Jonathan SG. 2018. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Poll. 235:55–164. doi:10.1016/j.envpol.2017.12.042.
  • Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R. 2017b. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J Environ Manag. 200:253–262. doi:10.1016/j.jenvman.2017.05.090.
  • Bogan BW, Lamar RT. 1995. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 61(7):2631–2635.
  • Bosch R, Garcı´a-Valdés E, Moore ERB. 1999. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene degradation upper pathway from Pseudomonas stutzeri AN10. Gene. 236(1):149–157. doi:10.1016/S0378-1119(99)00241-3.
  • Cao B, Nagarajan K, Loh KC. 2009. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol. 85(2):207–228. doi:10.1007/s00253-009-2192-4.
  • Cerniglia CE. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 30:31–71. doi:10.1016/S0065-2164(08)70052-2.
  • Cerniglia CE. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegrad. 3(2–3):351–368. doi:10.1007/BF00129093.
  • Chen W, Bruhlmann F, Richins RD, Mulchandani A. 1999. Engineering of improved microbes and enzymes for bioremediation. Curr Opin Biotechnol. 10(2):137–141. doi:10.1016/S0958-1669(99)80023-8.
  • Dadrasnia A, Agamuthu P. 2013a. Dynamics of diesel fuel degradation in contaminated soil using organic wastes. Int J Environ Sci Technol. 10(4):769–778. doi:10.1007/s13762-013-0224-1.
  • Dadrasnia A, Agamuthu P. 2013b. Potential biowastes to remediate diesel contaminated soils. Global NEST J. 15(4):474–484. doi:10.30955/gnj.001031.
  • Dadrasnia A, Agamuthu P. 2013c. Diesel fuel degradation from contaminated soil by Dracaena reflexa using organic waste supplementation. Inter J Jpn Petrol Inst. 56(4):236–243. doi:10.1627/jpi.56.236.
  • Das N, Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011:1–13. doi:10.4061/2011/941810.
  • Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM. 2011. Earthworms, a means to accelerate removal of hydrocarbons (PAHs) from soil? A mini-review. Pedobiologia. 54:S187–S192. doi:10.1016/j.pedobi.2011.08.006.
  • Denome SA, Olson ES, Young KD. 1993. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol. 59(9):2837–2843.
  • Díaz Martínez ME, Argumedo-Delira R, Sánchez Viveros G, Alarcón A, Trejo-Téllez LI. 2018. Libia IT. Lead phytoextraction from printed circuit computer boards by Lolium perenne L. and Medicago sativa L. Intern J Phytorem. 20(5):432. doi:10.1080/15226514.2017.1365339.
  • Dimitrov S, Pavlov T, Nedelcheva D, Reuschenbach P, Silvani M, Bias R, Comber M, Low L, Lee C, Parkerton T, et al. 2007. A kinetic model for predicting biodegradation. SAR QSAR Environ Res. 18(5–6):443–457. doi:10.1080/10629360701429027.
  • Dua M, Singh A, Sethunathan N, Johri AK. 2002. Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol. 59(2–3):143–152. doi:10.1007/s00253-002-1024-6.
  • Escalante-Espinosa E, Gallegos-Martınez ME, Favela-Torres E, Gutierrez-Rojas M. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere. 59(3):405–413. doi:10.1016/j.chemosphere.2004.10.034.
  • Eun-Hee L, Kang LK, Kyung-Suk C. 2011. Bioremediation of diesel-contaminated soils by natural attenuation, biostimulation and bioaugmentation employing rhodococcus sp. EH831. Korean J Microbiol Biotechnol. 39(1):86–92.
  • Fan MY, Xie RJ, Qin G. 2014. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ Technol. 35(4):201–212. doi:10.1080/09593330.2013.829504.
  • Franzetti A, Caredda P, Ruggeri C, Colla PL, Tamburini E, Papacchini M, Bestetti G. 2009. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere. 75(6):801–807. doi:10.1016/j.chemosphere.2008.12.052.
  • Fuenmayor SL, Wild M, Boyes AL, Williams PA. 1998. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol. 180(9):2522–2530.
  • Gan S, Lau EV, Ng HK. 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater. 172(2–3):532–549. doi:10.1016/j.jhazmat.2009.07.118.
  • Gentry T, Rensing C, Pepper I. 2015. New approaches for bioremediation as a remediation technology. Environ. Sci. Technol.. 34(5):447–494.
  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176(1):20–30. doi:10.1016/j.plantsci.2008.09.014.
  • Gifford S, Dunstan RH, O’Connor W, Koller CE, Geoff RM. 2007. Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol. 25(2):60–120. doi:10.1016/j.tibtech.2006.12.002.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 28(3):367–374. doi:10.1016/j.biotechadv.2010.02.001.
  • Gunawardana B, Singhal N, Johnson A. 2011. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Int J Phytorem. 13(3):215–232. doi:10.1080/15226510903567448.
  • Guo S, Fan R, Li T, Hartog N, Li F, Yang X. 2014. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere. 109:226–233. doi:10.1016/j.chemosphere.02.007.
  • Hamamura N, Olson SH, Ward DM, Inskeep WP. 2006. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol. 72(9):6316–6324. doi:10.1128/AEM.01015-06.
  • Hofrichhter M, Vares T, Kalsi M, Galkin S, Schneibner K, Fritsche W, Hatakka A. 1999. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungus Nematoloma forwardii. Appl Environ Microbiol. 65:1864–1870.
  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM. 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut. 130(3):465–476. doi:10.1016/j.envpol.2003.09.031
  • IUPAC. 1995. IUPAC commission on the nomenclature of organic chemistry and commission on physical organic chemistry, glossary of class names of organic compounds and reactive intermediates based on structure. IUPAC recommendations. Prepared for publication by G.P. Moss, P.A.S. Smith, D. Tavernier. Pure Appl Chem. 67:1307–1375.
  • Jayasekara R, Harding I, Bowater I, Lonergan G. 2005. Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ. 13(3):231–250. doi:10.1007/s10924-005-4758-2.
  • Johnson DL, Anderson DR, McGrath SP. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem. 37(12):2334–2326. doi:10.1016/j.soilbio.2005.04.001.
  • Joner JE, Leyval C, Colpaert VJ. 2006. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut. 142(1):34–38. doi:10.1016/j.soilbio.2005.04.001.
  • Jordahl JL, Madison MF, Smesrud HME, Motte MQ. 2002. In: McCutcheon SC, Schnoor JL, editors, Phytoremediation- degradation and control of contaminants. New York (NY): Wiley Interscience.
  • Kanaly RA, Harayama S, Watanabe K. 2002. Rhodanobacter sp. Strain BPCI in a benso(a)pyrene-mineralizing bacterial consortium. In: Douben PET, editor, Applied. Environ. Microbiology. 68:5826–5833.
  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE. 2001. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol. 67(8):3577–3585. doi:10.1128/AEM.67.8.3577-3585.2001.
  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N. 1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol. 176(8):2439–2443. doi:10.1128/jb.176.8.2439-2443.
  • Kulshreshtha S, Nupur M, Pradeep B. 2014. Mushroom as a product and their role in Mycoremediation. AMB Express. 4:29. doi:10.1186/s13568-014-0029-8. http://www.amb-express.com/content/4/1/29.
  • Kurkela S, Lehväslaiho H, Palva ET, Teeri TH. 1988. Cloning, nucleotide sequence, and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene. 73(2):355–362. doi:10.1016/0378-1119(88)90500-8.
  • Lagergren S. 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svena Vetenskakad Handl Band. 24(4):1–39.
  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS. 2006. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol. 72(4):2331–2342. doi:10.1128/AEM.72.4.2331-2342.2006.
  • Li HY, Chen J, Jiang L. 2014. Elevated critical micelle concentration in soil water system and its implication on PAH removal and surfactant selecting. Environ Earth Sci. 71(9):3991–3998. doi:10.1007/s12665-013-2783-3.
  • Li HY, Liang F, Zhu YF, Wang FP. 2013. Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soils Sediments. 13(5):925–931. doi:10.1007/s11368-012-0618-6.
  • Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ. 2007. Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol. 9(2):465–473. doi:10.1111/j.1462-2920.2006.01163.x.
  • Malik ZA, Ahmed S. 2012. Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr J Biotechnol. 11:650–658. doi:10.5897/AJB11.036.
  • Matthies M, Witt J, Klasmeier J. 2008. Determination of soil biodegradation half-lives from simulation testing under aerobic laboratory conditions: a kinetic model approach. Environ Poll. 156(1):99–105. doi:10.1016/j.envpol.2007.12.040.
  • Monica S, Karthik L, Mythili S, Sathiavelu A. 2011. Formulation of effective microbial consortia and its application for sewage treatment. J Microbial Biochem Technol. 3:51–55. doi:10.4172/1948-5948.1000051.
  • Mueller KE, Shann JR. 2006. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere. 64(6):1006–1014. doi:10.1016/j.chemosphere.2005.12.051.
  • Mulligan CN. 2005. Environmental applications for biosurfactants. Environ Pollut. 133(2):183–198. doi:10.1016/j.envpol.2004.06.009.
  • Nadal M, Schuhmacher M, Domingo JL. 2004. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut. 132(1):1–11. doi:10.1016/j.envpol.2004.04.003.
  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B. 2011. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One. 6(3):e17961. doi:10.1371/journal.pone.0017961.
  • Odu CTI. 1972. Microbiology of soils contaminated with petroleum hydrocarbons: I. extent of contamination and some soil and microbial properties after contamination. J Inst Pet. 58:201–208.
  • Olanipekun OO, Ogunbayo AO, Nwachukwu SCU, Bello RA. 2015. Comparative study of microbial activities and biodegradation-abilities of undefined consortium in some hydrocarbon contaminated sites in the niger delta, Nigeria. J Environ Prot. 06(02):138–145. doi:10.4236/jep.2015.62016.
  • Omotayo AE, Ojo OY, Amund OO. 2012. Crude oil degradation by microorganisms in soil composts. Res J Microbiol. 7(4):209–218. doi:10.3923/jm.2012.209.218.
  • Pala DM, de Carvalho DD, Pinto JC, Sant’Anna GL. 2006. A suitable model to describe bioremediation of a petroleum-contaminated soil. Int Biodeter Biodegr. 58(3–4):254–260. doi:10.1016/j.ibiod.2006.06.026.
  • Paul D, Pandey G, Pandey J, Jain RK. 2005. Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol. 23(3):135–142. doi:10.1016/j.tibtech.2005.01.001.
  • Perelo LW. 2010. Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater. 177(1–3):81–89. doi:10.1016/j.jhazmat.2009.12.090.
  • Platt A, Shingler V, Taylor SC, Williams PA. 1995. The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the NahM and NahO genes of the naphthalene catabolic plasmid pWW60–22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology. 141(9):2223–2233. doi:10.1099/13500872-141-9-2223.
  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R. 2005. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol. 183(1):27–36. doi:10.1007/s00203-004-0742-9.
  • Reuben NO, Josiah M, Ayotamuno D, Davis D, Mary A. 2011. Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill cuttings. Afr J Biotechnol. 10(26):5149–5156. doi:10.5897/AJB10.1108. http://www.academicjournals.org/AJB
  • Rubilar O, Tortella G, Cea M, Acevedo F, Bustamante M, Gianfreda L, Diez MC. 2011. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white rot fungi. Biodegradation. 22(1):31–41. doi:10.1007/s10532-010-9373-9.
  • Saito A, Iwabuchi T, Harayama S. 2000. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol. 182(8):2134–2141.
  • Schell MA, Wender PE. 1986. Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J Bacteriol. 166(1):9–14.
  • Scheller U, Zimmer T, Becher D, Schauer F, Schunck WH. 1998. Oxygenation cascade in conversion of n-alkanes to alpha,omega-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem. 273(49):32528–32534.
  • Scow KM, Hicks KA. 2005. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol. 16(3):246–253. doi:10.1016/j.copbio.2005.03.009.
  • Segura A, Ramos JL. 2013. Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotech. 24(3):467–473. doi:10.1016/j.copbio.2012.09.011.
  • Segura A, Rodriguez-Conde S, Ramos C, Ramos JL. 2009. Bacterial responses and interactions with plants during rhizome mediation. Microb. Biotechnology. 2:454–464. doi:10.1111/j.1751-7915.2009.00113.x.
  • Semple KT, Morris AWJ, Paton GI. 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Science. 54(4):809–818. doi:10.1046/j.1351-0754.2003.0564.x.
  • Shimao M. 2001. Biodegradation of plastics. Curr Opin Biotechnol. 12(3):242–247. doi:10.1016/S0958-1669(00)00206-8.
  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 127(1):31–37. doi:10.1016/0378-1119(93)90613-8.
  • Snowden RJ, Ekweozor IKE. 1987. The impact of a minor oil spillage in the estuarine Niger delta. Mar Pollut Bull. 18(11):595–599. doi:10.1016/0025-326X(87)90279-7.
  • State of California. 2011. Los angeles regional waste discharge requirement (LARWDR). http://www.waterboards.ca.gov/losangeles/water_issues/programs/ground_water_permtting/04_29_11/R4-2011-0052_WDR_02.pdf.
  • Story SP, Parker SH, Kline JD, Tzeng TRJ, Mueller JG, Kline EL. 2000. Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene. 260(1–2):155–169. doi:10.1016/S0378-1119(00)90445-1.
  • Subash N, Sasikumar C. 2014. Bioremediation of PAHS Contaminated soil by utilizing an indigenous earthworm species, Perionyx excavatus. Int J Pharm Bio Sci. B5(3):449–455.
  • Sun M, Fu D, Teng Y, Shen Y, Luo Y, Li Z, Christie P. 2011. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soils Sediments. 11(6):980–989. doi:10.1007/s11368-011-0382-z.
  • Sutherland C, Venkobachar C. 2013. Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant, Ani Environ Sci. 3:93–203.
  • Sutherland JB, Rafti F, Khan AA, Cerniglia CE. 1995. Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE, editors, Microbial transformation and degradation of toxic organic chemicals. New York (NY): Wiley-Liss. p. 269–306.
  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H. 1994. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol. 176(8):2444–2449. doi:10.1128/jb.176.8.2444-2449.
  • Timmis KN, Pieper DH. 1999. Bacteria designed for bioremediation. Trends Biotechnol. 17(5):201–204. doi:10.1016/S0167-7799(98)01295-5.
  • Treadway SL, Yanagimachi KS, Lankenau E, Lessard PA, Stephanopoulos G, Sinskey AJ. 1999. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol. 51(6):786–793. doi:10.1007/s002530051.
  • Ujowundu CO, Kalu FN, Nwosunjoku EC, Nwaoguikpe RN, Okechukwu RI, Igwe KO. 2011. Iodine and inorganic mineral contents of some vegetables, spices and grains consumed in South Eastern Nigeria. Afr J Biochem Res. 5:57–64.
  • Ukaegbu-Obi KM, Mbakwem-Aniebo CC. 2014. Bioremediation potentials of bacteria isolated from rhizosphere of some plants of oil contaminated soil of Niger Delta. J Appl Enviorn Microbiol. 2(4):194–197. doi:10.12691/jaem-2-4-13.
  • Valentine TA, Hallett PD, Binnie K, Young M, Squire GR, Hawes K, Bengough AG. 2012. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Ann Bot. 110(2):259–279. doi:10.1093/aob/mcs118.
  • Van Beilen JB, Funhoff EG. 2005. Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol. 16(3):308–314. doi:10.1016/j.copbio.2005.04.005.
  • Vandermeer JR. 1994. Genetic adaptation of bacteria to chlorinated aromatic compounds. Fems Microbiol Rev. 15(2–3):239–249. doi:10.1016/0168-6445(94)90115-5.
  • Vandermeer JR, Devos WM, Harayama S, Zehnder AJB. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev. 56:677–694.
  • Vcao CM, Chen CY, Chen SC, Chien HY, Chen YL. 2015. Application of in situ bisparging to remediate a petroleum a hydrocarbon spill site: Field and microbial evaluation. Chemosphere. 70:1492–1499.
  • Vidali M. 2014. Bioremediation. An overview. Pure App Chem. 73(7):1163–1172. doi:10.1351/pac200173071163.
  • Volkering F, Breure AM, Chen SC, Van Andel JG, Rulkens WH. 1998. Influence of nonionic surfactants on bioavailability and biodegradation of polyclic aromatic hydrocarbons. App. Environ. Microbiology.. 61:1699–1705.
  • Volkering F, Breure AM. 2003. Biodegradation and general aspects of bioavailability. In: Doubon PET, editor, PAHs: an ecotoxicological perspective. West Sussex, England: Wiley & Sons Ltd. pp. 82–96.
  • Wenzel WW. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 321(1–2):385–408. 10.1007/s11104-008-9686-1.
  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J. 2009. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27(10):591–598. doi:10.1016/j.tibtech.2009.07.006.
  • Wunder T, Marr J, Kremer S, Sterner O, Anke H. 1997. 1-methoxypyrene and 1,6-dimethoxypyrene: Two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch Microbiol. 167(5):310–316. doi:10.1007/s002030050.
  • Yen KM, Serdar CM. 1988. Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol. 15(3):247–268. doi:10.3109/10408418809104459.
  • Zahed MA, Abdul Aziz H, Isa MH, Mohajeri L, Mohajeri S, Kutty SRM. 2011. Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500. J Hazard Mater. 185(2–3):1027–1031. doi:10.1016/j.jhazmat.2010.10.009.
  • Zhang Z, Qixing Z, Shengwei P, Zhang C. 2010. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ. 408(22):5600–5605. doi:10.1016/j.scitotenv.2010.08.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.