479
Views
42
CrossRef citations to date
0
Altmetric
Articles

EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil

, , , ORCID Icon, , & ORCID Icon show all

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Rehman MZ, Irshad MK, Bharwana SA. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res Int. 22(11):8148–8162.
  • Agency for Toxic Substances & Disease Registry – ATSDR 2016. United States Department of Health and Human Services, Priority List of Hazardous Substances [accessed 2016 Nov 14]. http://www.atsdr.cdc.gov/SPL/
  • Ahmadi M, Ziarati P, Manshadi M, Asgarpanah J, Mousavi Z. 2013. The phytoremediation technique for cleaning up contaminated soil by Geranium (Pelargonium roseum). Int J Farm Alli Sci. 2(15):477–481.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881.
  • Ali SY, Paul M, Chaudhury S. 2016. EDTA-enhanced phytoextraction of Cd and Pb in spiked soil with Marigold and associated potential leaching risk. Int J Environ Agric Res. 2(5):114–118.
  • Alves J. D C, Souza A. P D, Pôrto MLA, Fontes RLF, Arruda J, Marques LF. 2016. Potential of sunflower, caster bean, common buckwheat and vetiver as lead phytoaccumulators. Rev Bras Eng Agríc Ambient. 20(3):243–249.
  • Arshad M, Merlina G, Uzu G, Sobanska S, Sarret G, Dumat C, Silvestre J, Pinelli E, Kallerhoff J. 2016. Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. J Soils Sedim. 16(2):581–591.
  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C. 2008. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere. 71(11):2187–2192.
  • Ashraf MA, Maah M, Yusoff I. 2014. Soil contamination, risk assessment and remediation. In: Hernandez Soriano MC, editor. Environmental risk assessment of soil contamination. Rijeka: INTECH. doi:10.5772/57287
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal − polluted soils. In: Terry N, Banuelos GS, editors. Phytoremediation of contaminated soil and water. Boca Raton, FL: CRC Press. p. 85−107.
  • Brown SL, Chaney RL, Angle JS, Baker AJM. 1994. Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc and cadmium contaminated soil. J Environ Qual. 23(6):1151–1157.
  • Canadian Council of Ministers of the Environment (CCME) 1999. Canadian soil quality guidelines for the protection of environmental and human health: Canadian Council of Ministers of the Environment, Winnipeg. http://ceqg-rcqe.ccme.ca/download/en/342/
  • Cay S, Uyanik A, Engin MS. 2016. ETA supported phytoextraction of Cd from contaminated soil by four different ornamental plant species. Soil Sediment Contam. 25(3):346–355.
  • Chen Y, Shen Z, Li X. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem. 19(10):1553–1565.
  • Ebrahimi M. 2015. Effect of EDTA treatment method on leaching of Pb and Cr by Phragmites australis (Cav.) Trin. Ex Steudel (common reed). Caspian J Environ Sci. 13(2):153–166.
  • Estefan G, Sommer R, Ryan J. 2013. Methods of soil plant and water analysis: a manual of the West Asia and North Africa region. 3rd ed. Eirut Lebanon: International Center for Agricultural Research in Dry Areas (ICARDA).
  • Freitas EV, Nascimento CW, Silva WM. 2014. Citric acid assisted phytoextraction of lead in field: the use of soil amendments. Water Air Soil Pollut. 225(1):1796. doi:10.1007/s11270-013-1796-6
  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res Int. 22(2):1534–1544.
  • Hassan MM, Suthar V, Ahmad R, Yousra M. 2017. Heavy metal phytoextraction − natural and EDTA assisted remediation of contaminated calcareous soils by Sorghum and oat. Environ Monit Assess. 189(11):591. doi:10.1007/s10661-017-6302-y
  • Hooda V. 2007. Phytoremediation of toxic metals from soil and waste water. J Environ Biol. 28(2 Suppl):367–376.
  • Kushwaha A, Hans N, Sanjay K, Rani R. 2018. A critical review on speciation, mobilization and toxicity of lead in soil − microbe − plant system and bioremediation: a review. Ecotoxicol Environ Saf. 147:1035–1045.
  • Laghlimi M, Baghdad B, Hadi HE, Bouabdli A. 2015. Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol. 5(08):375–388.
  • Lu RK. 2000. Methods of soil and agro − chemical analysis. Beijing: China Agricultural Science and Technology Press. p. 477−479.
  • Mahdieh M, Yazdani M, Mahdieh S. 2013. The potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ Monit Assess. 185(9):7877–7881.
  • Manshadi M, Ziarati P, Ahmadi M, Fekri K. 2013. Greenhouse study of cadmium and lead phytoextraction by five Pelargonium species. Int J Farm Alli Sci. 2:665–669.
  • Ministry of Environment, Finland (MEF) 2007., Government decree on the assessment of soil contamination and remediation need. 214/2007, March 1 2007.
  • Muhammad S, Shah MT, Khan S. 2011. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J. 98(2):334–343.
  • Nascimento CWAD, Amarasiriwardena D, Xing B. 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi − metal contaminated soil. Environ Pollut. 140(1):114–123.
  • Neugschwandtner RW, Tlustos P, Komarek M, Szakova J. 2009. Nutrient mobilization and nutrient contents of Zea mays in response to EDTA additions to heavy − metal − contaminated agricultural soil. J Plant Nutr Soil Sci. 172(4):520–527.
  • Orrono DI, Lavado RS. 2009. Heavy metal accumulation in Pelargonium hortorum: effect on growth and development. Int J Exp Bot. 78:75–82.
  • Pedron F, Rosellini I, Petruzzelli G, Barbafieri M. 2014. Chelant comparison for assisted phytoextraction of lead in two contaminated soils. Resource Environ. 4(5):209–214.
  • Rehman MZ, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah Nawaz MF, Akmal F, Waqar M. 2017. Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol Environ Saf. 143:236–248.
  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Rehman MZ, Zahir ZA, Rinklebe J, Tack FMG, Ok YS. 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105.
  • Rizwan M, Ali S, Rizvi H, Rinklebe J, Tsang DCW, Meers E, Ok YS, Ishaque W. 2016. Phytomanagement of heavy metals in contaminated soils using sunflower—a review. Crit Rev Env Sci Technol. 46(18):1498–1528.
  • Salama AK, Osman KA, Gouda NAR. 2016. Remediation of lead and cadmium-contaminated soils. Int J Phytoremediation. 18(4):364–367.
  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C. 2012. Long − term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytorem. 14(5):493–505.
  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C. 2014. EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam. 23(4):389–416.
  • Sinegani AA, Khalilikhah F. 2008. Phytoextraction of lead by Helianthus annuss: effect of mobilizing agent application. Plant Soil Environ. 10:434–440.
  • Singh A, Prasad SM. 2011. Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol. 10(3):199–214.
  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X. 2011. The role of EDTA on cadmium phytoextraction in a cadmium hyperaccumulator Rorippa globosa. J Environ Chem Ecotoxicol. 3(3):45–51.
  • US-EPA 2001. Pb, identification of dangerous levels, final rule. Code Fed. 66:1206–1240.
  • Waseem A, Arshad J, Iqbal F, Sajjad A, Mehmood Z, Murtaza G. 2014. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil and vegetables. Biomed Res Int. 2014:813206. doi:10.1155/2014/813206
  • Wei CY, Chen TB, Huang ZC. 2002. Cretan bake (Pteris cretica): an arsenic accumulating plant. Acta Ecol Sin. 22:777–782.
  • Yang Y, Ge Y, Zeng H, Zhou X, Peng L, Zeng Q. 2017. Phytoextraction of cadmium contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci Rep. 7(1):7210. doi:10.1038/s41598-017-05834
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464.
  • Zheng L-J, Liu X-M, Lütz-Meindl U, Peer T. 2011. Effects of lead and EDTA assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinesis and Lespedeza davidii. Water Air Soil Pollut. 220(1–4):57–68.
  • Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int. 31(5):755–762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.