248
Views
19
CrossRef citations to date
0
Altmetric
Articles

Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil

ORCID Icon, ORCID Icon, , &
Pages 1337-1345 | Received 02 Feb 2018, Accepted 03 Jul 2018, Published online: 22 Jan 2019

References

  • Ahmad I, Naeem M, Khan NA. Samiullah 2009. Effects of cadmium stress upon activities of antioxidative enzymes, photosynthetic rate, and production of phytochelatins in leaves and chloroplasts of wheat cultivars differing in yield potential. Photosynthetica. 47(1):146–151. doi:10.1007/s11099-009-0024-5.
  • Aibibu NA, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L. 2010. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol. 101(16):6297–6303. doi:10.1016/j.biortech.2010.03.028.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Amna AN, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MF, Chaudhary HJ. 2015. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess. 187:311. doi:10.1007/s10661-015-4557-8.
  • Bazzaz FA, Rolfe GL, Carlson RW. 1974. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant. 32(4):373–376. doi:10.1111/j.1399-3054.1974.tb03154.x.
  • Chai L, Li H, Yang Z, Min X, Liao Q, Liu Y, Men S, Yan Y, Xu J. 2017. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ Sci Pollut Res. 24(1):874–885. doi:10.1007/s11356-016-7872-x.
  • Chai L, Mubarak H, Yang Z, Yong W, Tang C, Mirza N. 2016. Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. Environ Sci Pollut Res. 23(8):7470–7481. doi:10.1007/s11356-015-5987-0.
  • Chang E, Shi S, Liu J, Cheng T, Xue L, Yang X, Yang W, Lan Q, Jiang Z. 2012. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. PLoS One. 7(3):e33278. doi:10.1371/journal.pone.0033278.
  • Clabeaux BL, Navarro DAG, Aga DS, Bisson MA. 2011. Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: Potential use for charophytes in phytoremediation. Environ Sci Technol. 45(12):5332–5338. doi:10.1021/es200720u.
  • Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: A review. Environ Pollut. 98(1):29–36. doi:10.1016/S0269-7491(97)00110-3.
  • Domínguez MT, Madrid F, Marañón T, Murillo JM. 2009. Cadmium availability in soil and retention in oak roots: Potential for phytostabilization. Chemosphere. 76(4):480–486. doi:10.1016/j.chemosphere.2009.03.026.
  • Fan K, Hsi H, Chen C, Lee H, Hseu Z. 2011. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J Environ Manage. 92(10):2818–2822. doi:10.1016/j.jenvman.2011.06.032.
  • Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z. 2018. Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotox Environ Safe. 147:306–312. doi:10.1016/j.ecoenv.2017.08.056.
  • Guo B, Liu C, Ding N, Fu Q, Lin Y, Li H, Li N. 2016. Silicon alleviates cadmium toxicity in two cypress varieties by strengthening the exodermis tissues and stimulating phenolic exudation of roots. J Plant Growth Regul. 35(2):420–429. doi:10.1007/s00344-015-9549-y.
  • Guo Z, Miao X. 2010. Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Cent South Univ Technol. 17(4):770–777. doi:10.1007/s11771-010-0555-8.
  • Hu Y, Nan Z, Su J, Wang N. 2013. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: Implications for phytoextraction and phytostabilization. Environ Sci Pollut Res. 20(10):7194–7203. doi:10.1007/s11356-013-1711-0.
  • Huang B, Guo Z, Tu W, Peng C, Xiao X, Zeng P, Liu Y, Wang M, Xiong J. 2018. Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China. Environ Earth Sci. 77(3):68. doi:10.1007/s12665-018-7249-1.
  • Jia L, He X, Chen W, Liu Z, Huang Y, Yu S. 2013. Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb. Ecotoxicology. 22(3):476–485. doi:10.1007/s10646-013-1041-5.
  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA. 2012. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J Phytoremediat. 14(2):162–173. doi:10.1080/15226514.2011.587479.
  • Liu X, Zhang S, Shan X, Christie P. 2007. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotox Environ Safe. 68(2):305–313. doi:10.1016/j.ecoenv.2006.11.001.
  • Liu Y, Guo Z, Xiao X, Wang S, Jiang Z, Zeng P. 2017. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment. Sci Total Environ. 576:292–302. doi:10.1016/j.scitotenv.2016.10.065.
  • Liu Y, Lin L, Jin Q, Zhu X. 2015. Cadmium accumulation and tolerance in the Cd-accumulator Capsella bursa-pastoris. Environ Prog Sustainable Energy. 34(3):663–668. doi:10.1002/ep.12037.
  • Lu H, Li Z, Fu S, Méndez A, Gascó G, Paz-Ferreiro J. 2015. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere. 119:209–216. doi:10.1016/j.chemosphere.2014.06.024.
  • Luo J, Qi S, Peng L, Wang J. 2016. Phytoremediation efficiency of Cd by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int J Phytoremediat. 18(4):308–314. https://doi.org/10.1080/15226514.2015.1094446
  • Luo Z, He J, Polle A, Rennenberg H. 2016. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv. 34(6):1131–1148. doi:10.1016/j.biotechadv.2016.07.003.
  • Ma JF, Ueno D, Zhao F, McGrath SP. 2005. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta. 220(5):731–736. doi:10.1007/s00425-004-1392-5.
  • Mascher R, Lippmann BR, Holzinger S, Bergmann H. 2002. Arsenate toxicity: Effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163(5):961–969. doi:10.1016/S0168-9452(02)00245-5.
  • Mirza N, Mubarak H, Chai L, Yong W, Khan MJ, Khan QU, Hashmi MZ, Farooq U, Sarwar R, Yang Z. 2017. The potential use of Vetiveria zizanioides for the phytoremediation of antimony, arsenic and their co-contamination. Bull Environ Contam Toxicol. 99(4):511–517. doi:10.1007/s00128-017-2150-2.
  • Nie J, Liu Y, Zeng G, Zheng B, Tan X, Liu H, Xie J, Gan C, Liu W. 2016. Cadmium accumulation and tolerance of Macleaya cordata: A newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environ Sci Pollut Res. 23(10):10189–10199. doi:10.1007/s11356-016-6263-7.
  • Nyitrai P, Bóka K, Gáspár L, Sárvári É, Lenti K, Keresztes Á. 2003. Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. J Plant Physiol. 160(10):1175–1183. doi:10.1078/0176-1617-00770.
  • Pansu M, Gautheyrou J. 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, Springer-Verlag, Heidelberg.
  • Park JS, Kim HL, Kim YJ, Weon J, Sung M, Chung HW, Seo YR. 2014. Human AP endonuclease 1: A potential marker for the prediction of environmental carcinogenesis risk. Oxidative Med Cell Longev. 2014:1. doi:10.1155/2014/730301.
  • Pietrini F, Iori V, Bianconi D, Mughini G, Massacci A, Zacchini M. 2015. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters. J Environ Manage. 162:221–231. doi:10.1016/j.jenvman.2015.07.053.
  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ. 2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere. 74(1):6–12. doi:10.1016/j.chemosphere.2008.09.069.
  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L. 2010. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater. 184(1-3):299–307. doi:10.1016/j.jhazmat.2010.08.036.
  • Ruiz OA, Carrillo-Gonzalez R, Gonzalez-Chavez MC, Soto HR. 2013. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage. 114:316–323. doi:10.1016/j.jenvman.2012.10.023.
  • Schmedes A, Hølmer G. 1989. A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J Am Oil Chem Soc. 66(6):813–817. doi:10.1007/BF02653674.
  • Shi Y, Mu X, Li K, Shao H. 2016. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Environ Sci Pollut Res. 23(13):13489–13497. doi:10.1007/s11356-016-6432-8.
  • Somashekaraiah BV, Padmaja K, Prasad ARK. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiol Plant. 85(1):85–89. doi:10.1111/j.1399-3054.1992.tb05267.x.
  • Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T. 2014. Accumulation of heavy metals using Sorghum sp. Chemosphere. 104:15–24. doi:10.1016/j.chemosphere.2013.09.079.
  • Sun Y, Zhou Q, Diao C. 2008. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol. 99(5):1103–1110. doi:10.1016/j.biortech.2007.02.035.
  • Sun Y, Zhou Q, Wang L, Liu W. 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater. 161(2-3):808–814. doi:10.1016/j.jhazmat.2008.04.030.
  • Tang J, Liao Y, Yang Z, Chai L, Yang W. 2016. Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J Soils Sediments. 16(5):1519–1528. doi:10.1007/s11368-015-1345-6.
  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotox Environ Safe. 126:138–146. doi:10.1016/j.ecoenv.2015.12.031.
  • Van Nevel L, Mertens J, Staelens J, De Schrijver A, Tack FMG, De Neve S, Meers E, Verheyen K. 2011. Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol Eng. 37(7):1072–1080. doi:10.1016/j.ecoleng.2010.07.010.
  • Wang A, Wang M, Liao Q, He X. 2016. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environ Sci Pollut Res. 23(6):5410–5419. doi:10.1007/s11356-015-5781-z.
  • Wang J, Ye S, Xue S, Hartley W, Wu H, Shi L. 2018. The physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. Int Biodeterior Biodegrad. 128:11–14. doi:10.1016/j.ibiod.2016.04.030.
  • Wang L, Ji B, Hu Y, Liu R, Sun W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594–600. doi:10.1016/j.chemosphere.2017.06.025.
  • Wei S, Zhou Q, Wang X, Zhang K, Guo G, Ma LQ. 2005. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Sci Bull. 50(1):33–38. doi:10.1360/982004-292.
  • Wu S, Shen C, Yang Z, Lin B, Yuan J. 2016. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils. Int J Phytoremediat. 18(11):1148–1154. doi:10.1080/15226514.2016.1186595.
  • Xue S, Shi L, Wu C, Wu H, Qin Y, Pan W, Hartley W, Cui M. 2017. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res. 156:23–30. doi:10.1016/j.envres.2017.03.014.
  • Yang S, Liao B, Yang Z, Chai L, Li J. 2016. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Sci Total Environ. 562:427–434. doi:10.1016/j.scitotenv.2016.03.208.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259(1/2):181–189. doi:10.1023/B:PLSO.0000020956.24027.f2.
  • Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. 2018. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediat. 20(4):311–320. doi:10.1080/15226514.2017.1381939.
  • Zhang S, Chen M, Li T, Xu X, Deng L. 2010. A newly found cadmium accumulator—Malva sinensis Cavan. J Hazard Mater. 173(1-3):705–709. doi:10.1016/j.jhazmat.2009.08.142.
  • Zhou F, Wang J, Yang N. 2015. Growth responses, antioxidant enzyme activities and lead accumulation of Sophora japonica and Platycladus orientalis seedlings under Pb and water stress. Plant Growth Regul. 75(1):383–389. doi:10.1007/s10725-014-9927-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.