173
Views
4
CrossRef citations to date
0
Altmetric
Articles

Magnetic characterizations of nickel hyperaccumulating plants (Planchonella oxyhedra and Rinorea bengalensis) from Halmahera, Indonesia

, , , &
Pages 364-371 | Received 09 May 2018, Accepted 27 Aug 2018, Published online: 14 Jan 2019

References

  • Ananthapadmanabha AL, Shankar R, Sandeep K. 2014. Rock magnetic properties of lateritic soil profiles from southern India: evidence for pedogenic processes. J App Geoph. 111:203–210. doi:10.1016/j.jappgeo.2014.10.009
  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS. 2017. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage. 198:132–143. doi:10.1016/j.jenvman.2017.04.060
  • Bearley F. 2005. Nutrient limitation in a Malaysian ultramafic soil. JTFS. 17(4):596–609.
  • Bertini I, Turano P, Vila AJ. 1993. Nuclear magnetic resonance of paramagnetic metalloproteins. Chem Rev. 93(8):2833–2332. doi:10.1021/cr00024a009
  • Brooks RR, Lee J, Reeves D, Jaffre T. 1977. Detection of nickelferous rocks by analysis of herbarium specimens of indicators plants. J Geochem Explor. 7:49–77.
  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A. 2010. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol. 8(1):26–28. doi:10.1186/1477-3155-8-26
  • Dearing J. 1999. Environmental magnetic susceptibility using the Bartington MS2 System. British Library Cataloguing in Publication Data.
  • Dotaniya ML, Meena HM, Lata M, Kumar K. 2013. Role of phytosiderophores in iron uptake by plants. Agric Sci Digest. 33:73–76.
  • Duman F, Leblebici Z, Aksoy A. 2009. Bioaccumulation of nickel, copper, and cadmium by Spirodela polyrhiza and Lemna gibba. J Freshwater Ecol. 24(1):177–179. doi:10.1080/02705060.2009.9664279
  • Estrada E, Gutierrez Y, González H. 2000. Modelling diamagnetic and magnetooptic properties of organic compounds with the TOSS-MODE approach. J Chem Inf Comput Sci. 40(6):1386–1399. doi:10.1021/ci000041e
  • Fabian K, Reimann C, McEnroe SA, Willemoes-Wissing B. 2011. Magnetic properties of terrestrial moss (Hylocomium splendens) along a north–south profile crossing the city of Oslo, Norway. Sci Total Environ. 409(11):2252–2260. doi:10.1016/j.scitotenv.2011.02.018
  • Gadjardziska-Josifovska M, McClean RG, Schofield MA, Sommer CV, Kean W. 2001. Discovery of nanocrystalline botanical magnetite. Eur J Mineral. 13:863–870. doi:10.1127/0935-1221/2001/0013-0863
  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N. 2017. Ultramafic geoecology of South and Southeast Asia. Botanical Studies. 58(1):18. doi:10.1186/s40529-017-0167-9
  • Gang Y, Shouyun HU, Liwan CAO, Roesler W, Appel E. 2013. Magnetic properties of tree leaves and their significance in atmospheric particle pollution in Linfen City, China. Chin Geogr Sci. 23(1):59–72. doi:10.1007/s11769-013-0588-7
  • Gautam P, Blaha U, Appel E. 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city. Nepal. Atmos Environ. 39(12):2201–2211. doi:10.1016/j.atmosenv.2005.01.006
  • Ghaderian SM, Ghasemi R, Hajihashemi F. 2015. Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae). Aust J Bot. 63(2):47–55. doi:10.1071/BT14210
  • Jensen MR, Hass MAS, Hansen DF, Led JJ. 2007. Investigating metal-binding in proteins by nuclear magnetic resonance. Cell Mol Life Sci. 64(9):1085–1104. doi:10.1007/s00018-007-6447-x
  • Kahn O. 1993. Molecular magnetism. New York (UK): VCH Publisher, Inc.
  • Lambers H, Hayes PE, Laliberte E, Oliveira S, Turner BL. 2015. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant. Sci. 20(2):83–90. doi:10.11016/j.tplants.2014.10.007
  • Matzka J, Maher BA. 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos Environ. 33(28):4565–4569. doi:10.1016/S1352-2310(99)00229-0
  • McClean RG, Schofield MA, Kean WF, Sommer CV, Robertson DP, Toth D, Gajdardziska-Josifovska M. 2001. Botanical iron mineral: correlation between nanocrystal structure and modes of biological self-assembly. Eur J Mineral. 13(6):1235–1242. doi:10.1127/0935-1221/2001/0013-1235
  • McNear DH, Jr, Chaney L, Sparks DL. 2010. The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry. 71(2–3):188–200. doi:10.1016/j.phytochem.2009.10.023
  • Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL. 2008. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry. 69(8):1695–1709. doi:10.1016/j.phytochem.2008.02.009
  • Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH. 2004. Manganese clusters with relevance to photosystem II. Chem Rev. 104(9):3981–4026. doi:10.1021/cr0206014
  • Porsch K, Dippon U, Rijal ML, Appel E, Kappler A. 2010. In-situ magnetic susceptibility measurements as a tool to follow geomicrobiological transformation of Fe minerals. Environ Sci Technol. 44(10):3846–3852. doi:10.1021/es903954u
  • Proctor J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. PPEES. 6(1–2):105–124. doi:10.1078/1433-8319-00045
  • Quayle BM, Mather TA, Witt MLI, Maher BA, Mitchell R, Martin RS, Calabrese S. 2010. Application and evaluation of biomagnetic and biochemical monitoring of the dispersion and deposition of volcanically-derived particles at Mt. Etna, Italy. J Volcanol Geotherm Res. 191(1–2):107–116. doi:10.1016/j.jvolgeores.2010.01.004
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016
  • Razzaq R. 2017. Phytoremediation: an environmental; friendly technique-a review. J Environ Anal Chem. 4:1–4. doi:10.41722380-2391.1000195
  • Reyes BA, Mejia V, Goguitchaichvili A, Escobar J, Bayona G, Bautista F, Morales JC, Ihl TJ. 2013. Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Stud Geophys Geod. 57(4):741–754. doi:10.1007/s11200-012-0682-9
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80(1):175–180.
  • Safiuddin LO, Wirman RP, Haris V, Bijaksana S. 2011. A preliminary study of the magnetic properites on laterite soil as indicator of pedogenic processes. Latinmag Letters. 1(1):1–15.
  • Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen J, Ishikita H. 2011. Distribution of the Cationic State over the chlorophyll pair of the photosystem II reaction center. J Am Chem Soc. 133(36):14379–14388. doi:10.1021/ja203947
  • Schlueter JA. 2009. Conducting and magnetic organometallic molecular materials, topics in organometallic chemistry 27. Berlin; Heidelberg: Springer-Verlag.
  • Semenikhin PV, Veinger AI, Zabrodskii AG, Makarova TL, Tisnek TV, Goloshchapov SI. 2015. Determination of the diamagnetic and paramagnetic impurity magnetic susceptibility in Ge: as near the metal insulator phase transition. J Phys: Conf Ser. 661:012023. doi:10.1088/1742-6596/661/1/012023
  • Souza LA, Piotto FA, Nogueirol RC, Azevedo RA. 2013. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric (Piracicaba, Braz.). 70(4):290–295. doi:doi:10.1590/S0103-90162013000400010
  • Størmer FC, Wielgolaski FE. 2010. Are magnetite and ferritin involved in plant memory? Rev Environ Sci Biotechnol. 9(2):105–107. doi:10.1007/s11157-010-9203-x
  • Sudarningsih S, Bijaksana S, Ramdani R, Hafidz A, Pratama A, Widodo W, Iskandar I, Dahrin D, Fajar SJ, Santoso NA. 2017. Variations in the concentration of magnetic minerals and heavy metals in suspended sediments from Citarum River and its tributaries, West Java, Indonesia. Geosciences. 7(3):66. doi:10.3390/geosciences7030066
  • Tariq SR, Ashraf A. 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab J Chem. 9(6):806–814. doi:10.1016/j.arabjc.2013.09.024
  • Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJ, Rivers ML, Marcus MA, Chaney RL, Sparks DL. 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol. 175(4):641–654. doi:10.1111/j.1469-8137.2007.02134.x
  • Tarnawski Z, Wiecheć A, Madej M, Nowak D, Owoc D, Król G, Kąkol Z, Kolwicz-Chodak L, KozŁowski A, Dawid T. 2004. Studies of the verwey transition in magnetite. Acta Phys Pol A. 106(5):771–775.
  • Tiwari D, Rajeev KP. 2005. Signature of spin-glass freezing in NiO nanoparticles. Phys Rev B. 72:104433-1–104433-9. doi:10.1103/PhysRevB.72.104433
  • Urbat M, Lehndorff E, Schwark L. 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler-part I: magnetic properties. Atmos Environ. 38(23):3781–3792. doi:10.1016/j.atmosenv.2004.03.061
  • Urlich EL. 1978. Blue-copper proteins: nuclear magnetic resonance investigations. Coord Chem Rev. 27:109–140. doi:10.1016/S0010-8545(00)80356-2
  • Van der Ent A, Baker AJM, Van Balgooy MMJ, Tjoa A. 2013. Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor. 128:72–29. doi:10.1016/j.gexplo.2013.01.009
  • Xuan S, Wang YJ, Yu JC, Ken Leung C. 2009. Tuning the grain size and particle size of superparamagnetic Fe3O4 micro particles. Chem Mater. 21(21):5079–5087. doi:10.1021/cm901618m
  • Zhang C, Huang B, Piper JDA, Luo R. 2008. Biomonitoring of atmospheric particulate matter using magnetic properties. Sci Tot Environ. 393(1):177–190. doi:10.1016/j.scitotenv.2007.12.032
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 10(6):713. doi:10.1039/b805998e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.