228
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Decontamination of soil containing oil by natural attenuation, phytoremediation and chemical desorption

, &

References

  • Abed RMM, Al-Kindi S. 2017. Variable response of oil-polluted soils to biostimulation treatments using nonionic surfactants and inorganic nutrients. Environ Process. 4(4):873–889. doi:10.1007/s40710-017-0269-0.
  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G. 2016. Citric acid- and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res. 23(9):9215–9226. doi:10.1007/s11356-015-5972-7.
  • Alexander M. 1994. Introducción a la Microbiología del Suelo. 2a. reimp. AGT. México, D.F.
  • An CJ, Huang GH, Wei J, Yu H. 2011. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res. 45(17):5501–5510. doi:10.1016/j.watres.2011.08.011.
  • Arias-Trinidad A, Rivera-Cruz MC, Roldán-Garrigós A, Aceves-Navarro LA, Quintero-Lizaola R, Hernández-Guzmán J. 2017. Uso de Leersia hexandra (Poaceae) en la fitorremediación de suelos contaminados con petróleo fresco e intemperizado. RBT. 65(1):21–30. doi:10.15517/rbt.v65i1.22967.
  • Banat MI, Makkar SR, Cameotra SS. 2000. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 53(5):495–508. doi:10.1007/s002530051648.
  • Bento MF, Camargo OAF, Okeke CB, Frankenberger TW. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol. 96(9):1049–1055. doi:10.1016/j.biortech.2004.09.008.
  • Bordoloi S, Basumatary B, Saikia R, Das HC. 2012. Axonopus compressus (Sw.) P. Beauv. A native grass species for phytoremediation of hydrocarbon-contaminated soil in Assam, India. J Chem Technol Biotechnol. 87(9):1335–1341. doi:10.1002/jctb.3765.
  • Cartmill A, Cartmill D, Alarcón A. 2014. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Int J Phytoremediat. 16(3):285–301. doi:10.1080/15226514.2013.773280.
  • Cheng YK, Wong CWJ. 2006. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil-water system. Chemosphere. 62(11):1907–1916. doi:10.1016/j.chemosphere.2005.07.028.
  • Dong HW, Zhang Y, Lin YX, Tabouré A. 2014. Adsorption studies of 1, 2, 4-trichlorobenzene onto shallow aquifer media at the Luhuagang landfill site in Kaifeng, China. Environ Earth Sci. 71(10):4353–4362. doi:10.1007/s12665-013-2829-6.
  • EPA 1986. Method 418.1 modif. Washington (DC): Petroleum Hydrocarbons Total Recoverable Spectrophotometric Infrared. Environmental Protection Agency.
  • Fadhile AA, Abu HH, Idris M, Sheikh ASR, Anuar N. 2015. Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil. Ecol Eng. 84:113–120. doi:10.1016/j.ecoleng.2015.08.001.
  • Fernández LC, Rojas ANG, Roldán CTG, Ramírez IME, Zegarra MHG, Hernández UR, Reyes AJR, Hernández FD, Arce OJM. 2006. Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología. México, DF, Méx.
  • Ghosh MM, Yeom IT. 1997. Kinetic considerations in surfactant-enhanced bioavailability of soil-bound PAH. In: Alleman BC, Leeson A, editors. In situ and on-site bioremediation, vol. 2. Columbus (OH): Battelle Press. p. 575–580
  • Hadibarata T, Tachibana S. 2009. Enhanced chrysene biodegradation in presence of a synthetic surfactant. Interdisciplinary Studies on Environmental Chemistry-Environmental Research in Asia. TERRAPUB. p. 301–308.
  • IUSS Working Group WRB 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. Rome: FAO.
  • Johnson L, Curl E. 1972. Methods for research on the ecology of soil-borne plant pathogens. Minneapolis (MN): Burgess Publishing Company.
  • Kuzmicheva YV, Shaposhnikov AI, Petrova SN, Makarova NM, Tychinskaya IL, Puhalsky JV, Parahin NV, Tikhonovich IA, Belimov AA. 2017. Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant Soil. 419(1-2):83–96. doi:10.1007/s11104-017-3320-z.
  • Lai CC, Huang YC, Wei YH, Chang JS. 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater. 167(1–3):609–614. doi:10.1016/j.jhazmat.2009.01.017.
  • Lee D, Kim E, Chang H. 2005. Effect of Tween surfactant components for remediation of toluene-contaminated groundwater. Geosci J. 9(3):261–267. doi:10.1007/BF02910586.
  • Liao C, Liang X, Lu G, Thai T, Xu W, Dang Z. 2015. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol Environ Saf. 112:1–6. (February): doi:10.1016/j.ecoenv.2014.10.025
  • Liao C, Xu W, Lu G, Deng F, Liang X, Guo C, Dang Z. 2016. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays L.). Ecol Eng. 92:10–17. (July):doi:10.1016/j.ecoleng.2016.03.041.
  • Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant Soil. 389(1–2):109–119. doi:10.1007/s11104-014-2345-9.
  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. 2015. Brock. Biología de los Microorganismos. 14a. edición. S.A. Madrid (Spain): Pearson Educación.
  • Maier MR, Gentry JT. 2015. Microorganisms and organic pollutants. In: Pepper LI, Gerba PC, Gentry JT, editors. Environmental microbiology. 3rd ed. San Diego (CA): Academic Press. p. 377–413.
  • Maldonado-Chávez E, Rivera-Cruz MC, Izquierdo-Reyes F, Palma-López D. 2010. Efectos de rizosfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Universidad y Ciencia Trópico Húmedo. 26(2):121–136.
  • Mao X, Jiang R, Xiao W, Yu J. 2015. Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater. 285:419–435. doi:10.1016/j.jhazmat.2014.12.009
  • Marschner P. 2012. Rhizosphere biology. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. 3rd ed. Waltham (MA): Academic Press. p. 369–388
  • Merkl N, Schultze-Kraft R, Infante C. 2005. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 165(1–4):195–209. doi:10.1007/s11270-005-4979-y.
  • Pepper LI, Gerba PC. 2015. Cultural methods. In: Pepper LI, Gerba PC, Gentry JT, editors. Environmental microbiology. United States of America: Academic Press. p. 195–212.
  • Pivetz B. 2001. Phytoremediation of contaminated soil and ground water at hazardous waste sites. Washington (DC): Technology Innovation Office. Office of Soil Waste and Emergency Response, US EPA.
  • Rennie RJ. 1981 . A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol. 27(1):8–14. doi:10.1139/m81-002
  • Riojas HH, Torres LG, Mondaca I, Balderas J, Gortáres P. 2010. Efecto de los surfactantes en la biorremediación de suelos contaminados con hidrocarburos. Rev Química Viva. 3(9):120–145.
  • Riser-Roberts E. 1998. Remediation of petroleum contaminated soils. Biological, physical, and chemicals processes. Boca Raton (FL): Lewis Publishers.
  • Rivera-Cruz MC, Trujillo-Narcía A. 2004. Estudio de toxicidad vegetal en suelos contaminados con petróleos nuevo e intemperizado. Interciencia. 29(7):369–376.
  • Rivera-Cruz MC, Trujillo-Narcía A, Trujillo-Rivera EA, Arias-Trinidad A, Mendoza-López MR. 2016. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico. Int J Phytoremediat. 18(9):877–884. doi:10.1080/15226514.2016.1156632.
  • Rodríguez-Rodríguez N, Rivera-Cruz MC, Trujillo-Narcía A, Almaráz-Suarez JJ, Salgado-García S. 2016. Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water Air Soil Poll. 227(9):319. doi:10.1007/s11270-016-3030-9
  • Rosenberg E, Ron EZ. 1996. Bioremediation of petroleum contamination. In: Crawford LR, Crawford LD, editors. Bioremediation: principles and applications. Moscow (ID): University of Idaho.
  • SAS (Statiscal Analysis Systems). 2005. User´s Guide, Versión 9.1.3. Cary (NC): SAS Institute, Inc.
  • Sałek K, Kaczorek E, Guzik U, Zgoła-Grześkowiak A. 2015. Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities. Environ Sci Pollut Res Int. 22(6):4305–4315. doi:10.1007/s11356-014-3668-z
  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS. 2013. Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water Air Soil Poll. 224(5):1495. doi:10.1007/s11270-013-1495-3
  • Shahsavari E, Adetutu ME, Taha M, Ball SA. 2015. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J Environ Manage. 155:171–176. doi:10.1016/j.jenvman.2015.03.027
  • Silva-Castro GA, Uad I, Rodríguez-Calvo A, González-López J, Calvo C. 2015. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ Res. 137:49–58. doi:10.1016/j.envres.2014.11.009.
  • Sokolova TA. 2015. Specificity of soil properties in the rhizosphere: analysis of literature data. Eurasian Soil Sc. 48(9):968–980. doi:10.1134/S1064229315050099.
  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X. 2013. The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and benzo[a]pyrene (BaP) using Tagetes patula. J Environ Manage. 114:202–208. doi:10.1016/j.jenvman.2012.09.018.
  • Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł. 2014. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manage. 132:121–128. doi:10.1016/j.jenvman.2013.11.006.
  • Szumała P, Szeląg H. 2012. Water solubilization using nonionic surfactants from renewable sources in microemulsion systems. J Surfact Deterg. 15(4):485–494. doi:10.1007/s11743-011-1323-y.
  • Tadeo RF, Gómez-Cárdenas A. 2008. Fisiología de las plantas y el estrés. In: Azcón-Bieto J, Talón M, editors. Fundamentos de Fisiología Vegetal. España: McGraw-Hall-International de España, S.A.U.
  • USEPA-3540C 1996. Soxhlet extraction organics. SW-846 test methods for evaluating solid waste physical/chemical methods. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3540c.pdf [accessed 2012 Jun 20].
  • Volke ST, Velazco JA. 2003. Biodegradación de hidrocarburos del petróleo en suelos intemperizados mediante composteo. México: Instituto Nacional de Ecología (INE-SEMARNAT).
  • Volkering F, Breure AM, Rulkens WH. 1998. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation. 8(6):401–417.
  • Yanto YHD, Tachibana S. 2014. Enhanced biodegradation of asphalt in the presence of Tween surfactants, Mn(2+) and H2O2 by Pestalotiopsis sp. in liquid medium and soil. Chemosphere. 103:105–113. doi:10.1016/j.chemosphere.2013.11.044
  • Xie W, Zhang Y, Li R, Yang H, Wu T, Zhao L, Lu Z. 2017. The responses of two native plant species to soil petroleum contamination in the Yellow River Delta, China. Environ Sci Pollut Res. 24(31):24438–24446. doi:10.1007/s11356-017-0085-0.
  • Xu Y, Sun G-D, Jin G-H, Liu Y, Luo M, Zhong Z-P, Liu Z-P. 2014. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Hazard Mater. 264:430–438. doi:10.1016/j.jhazmat.2013.10.071.
  • Xu R, Zhang Z, Wang L, Yin N, Zhan X. 2018. Surfactant-enhanced biodegradation of crude oil by mixed bacterial consortium in contaminated soil. Environ Sci Pollut Res. 25(15):14437–14446. doi:10.1007/s11356-018-1604-3.
  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Sun B, He X, Tang H, Xu P. 2010. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technol. 101(21):8452–8456. doi:10.1016/j.biortech.2010.05.060.
  • Zhang D, Zhu L. 2012. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut. 164:169–174. doi:10.1016/j.envpol.2012.01.036
  • Zhuang X, Chen J, Shim H, Bai Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 33(3):406–413. doi:10.1016/j.envint.2006.12.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.