644
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation

ORCID Icon, , , , &

References

  • Agunbiade FO, Olu-Owolabi BI, Adebowale KO. 2009. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresource Technol. 100(19):4521–4526. doi:10.1016/j.biortech.2009.04.011
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075
  • Allen S. 1989. Chemical analysis of ecological materials. London: Blackwell Scientific Publications.
  • APHA (American Public Health Association). 1998. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.
  • Blaylock MJ, Huang JW. 2005. Phytoextraction of metals. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals using plants to clean up the environment. New York, USA: Wiley. p.53–70.
  • Bonanno G, Lo Giudice R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Ind. 10(3):639–645. doi:10.1016/j.ecolind.2009.11.002
  • Bose S, Vedamati J, Rai V, Ramanathan AL. 2008. Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma. 145(1–2):136–142. doi:10.1016/j.geoderma.2008.03.009
  • Boulos L. 2005. Flora of Egypt, volume 4, Monocotyledons (Altismataceae - Orchidaceae). Cairo: Al-Hadara Publishing.
  • Carrión C, Ponce-de León C, Cram S, Sommer I, Hernández M, Vanegas C. 2012. Potential use of water hyacinth (Eichhornia crassipes) in Xochimilco for metal phytoremediation. Agrociencia. 46:609–620.
  • Center TD, Spencer NR. 1981. The phenology and growth of water hyacinth Eichhornia crassipes (Mart.) Solms in an eutropohic north-central Florida lake. Aquat Bot. 10:1–32. doi:10.1016/0304-3770(81)90002-4
  • Coetzee JA, Hill MP, Ruiz-Téllez T, Starfinger U, Brunel S. 2017. Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Bot Lett. 164(4):303–326. doi:10.1080/23818107.2017.1381041
  • Du Laing G, Tack FMG, Verloo MG. 2003. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal Chim Acta. 497(1-2):191–198. doi:10.1016/j.aca.2003.08.044.
  • Du Laing G, Van de Moortel AMK, Moors W, De Grauwe P, Meers E, Tack FMG, Verloo MG. 2009. Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol Eng. 35(2):310–318. doi:10.1016/j.ecoleng.2008.01.002
  • Eid EM. 2017. Verification of a numerical growth model of Pistia stratiotes L. using field data from tropical and subtropical sites. J Freshwater Ecol. 32(1):391–403. doi:10.1080/02705060.2017.1319430
  • Eid EM. 2018. Determination of carbohydrate allocation patterns in water hyacinth to discover the potential physiological weak points in its life cycle. J Freshwater Ecol. 33(1):1–394. doi:10.1080/02705060.2018.1478328
  • Eid EM, Shaltout KH. 2014. Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecol Eng. 73:17–25. doi:10.1016/j.ecoleng.2014.09.006
  • Eid EM, Shaltout KH. 2017a. Population dynamics of Eichhornia crassipes (C. Mart.) Solms in Nile Delta, Egypt. Plant Species Biol. 32(4):279–291. doi:10.1111/1442-1984.12154
  • Eid EM, Shaltout KH. 2017b. Growth dynamics of water hyacinth (Eichhornia crassipes): a modelling approach. Rend Fis Acc Lincei. 28(1):169–181. doi:10.1007/s12210-016-0589-4
  • Eid EM, Shaltout KH, El-Sheikh MA, Asaeda T. 2012. Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspective for phytoremediation. Flora. 207(11):783–794. doi:10.1016/j.flora.2012.09.003
  • Elkady AA, Sweet ST, Wade TL, Klein AG. 2015. Distribution and assessment of heavy metals in the aquatic environment of Lake Manzala, Egypt. Ecol Indic. 58:445–457. doi:10.1016/j.ecolind.2015.05.029
  • Fitzsimons R, Vallejos R. 1986. Growth of water hyacinth Eichhornia crassipes (Mart.) Solms in the middle Paraná River (Argentina). Hydrobiologia. 131(3):257–260. doi:10.1007/BF00008861
  • Galal TM, Eid EM, Dakhil MA, Hassan LM. 2018. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediat. 20(5):440–447. doi:10.1080/15226514.2017.1365343
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Env Res. 3(1):1–18. doi:10.15666/aeer/0301_001018
  • Global Invasive Species Database 2006. Eichhornia crassipes (aquatic plant). Gland, Switzerland: International Union for the Conservation of Nature (IUCN). http://www.issg.org/database/species/ecology.asp?si=70
  • Greco MKB, Freitas JR. 2002. On two methods to estimate production of Eichhornia crassipes in the eutrophic Pampulha Reservoir (MG, Brazil). Braz J Biol. 62(3):463–471. doi:10.1590/S1519-69842002000300010
  • Gupta S, Satpati S, Nayek S, Garai D. 2010. Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ Monit Assess. 165(1–4):169–177. doi:10.1007/s10661-009-0936-3
  • Gutiérrez EL, Ruiz EF, Uribe EG, Martínez JM. 2001. Biomass and productivity of water hyacinth and their application in control programs. In: Julien MH, Hill MP, Center TD, Jianqing D, editors. Biological and integrated control of water hyacinth, Eichhornia crassipes. Australia: ACIAR Proc. p.109–119.
  • Harun NH, Tuah PM, Markom NZ, Yusof MY. 2008. Distribution of heavy metals in Monochoria hastata and Eichhornia crassipes in natural habitats. Paper presented at International Conference on Environment Research and Technology, Penang, Malaysia, p. 550–553.
  • Holm LG, Plucknett DL, Pancho JV, Herberger JP. 1991. The world's worst weeds: distribution and biology. Malabar: Krieger Publishing Co.
  • Inubushi K, Sugii H, Nishino S, Nishino E. 2001. Effect of aquatic weeds on methane emission from submerged paddy soil. Am J Bot. 88(6):975–979. doi:10.2307/2657078
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. Boca Raton (FL): CRC Press.
  • Kamari A, Yusof N, Abdullah H, Haraguchi A, Abas MF. 2017. Assessment of heavy metals in water, sediment, Anabas testudineus and Eichhornia crassipes in a former mining pond in Perak, Malaysia. Chem Ecol. 33(7):637–651. doi:10.1080/02757540.2017.1351553
  • Kim IS, Kang HK, Johnson-Green P, Lee EJ. 2003. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut. 126(2):235–243. doi:10.1016/S0269-7491(03)00190-8
  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M. 1998. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res. 420(1–3):37–48. doi:10.1016/S1383-5718(98)00145-4
  • Latare AM, Kumar O, Singh SK, Gupta A. 2014. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 69:17–24. doi: 10.1016/j.ecoleng.2014.03.066
  • Liao SW, Chang NL. 2004. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage. 42:60–68.
  • Lin YX, Zhang XM. 1990. Accumulation of heavy metals and the variation of amino acids and protein in Eichhornia crassipes (Mart.) Solms in the Dianchi Lake. Oceanol Limnol Sin. 21:179–184.
  • Liu YJ, Zhu YG, Ding H. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut. 145(2):387–390. doi:10.1016/j.envpol.2006.05.010
  • Luu KT, Getsinger KD. 1990. Seasonal biomass and carbohydrate allocation in water hyacinth. J Aquat Plant Manage. 28:3–10.
  • Maddock JE, Santos MB, Marinho RS, et al. 1988. Eichhornia crassipes as a biological monitor of heavy metals in surface waters. In: Seeliger U, editor. Metals in coastal environments of Latin America. Berlin, Heidelberg: Springer-Verlag. p.276–285.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Safe. 126:111–121. doi:10.1016/j.ecoenv.2015.12.023
  • Mengel K, Kirkby EA. 2001. Principles of plant nutrition. Dordrecht: Kluwer Academic Publishers.
  • Mishra S, Maiti A. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 24(9):7921–7937. doi:10.1007/s11356-016-8357-7
  • NASA-POWER 2015. Climatology resource for agroclimatology. NASA prediction of worldwide energy. Accessed June 20, 2015. http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi/.
  • Newete SW, Byrne MJ. 2016. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res Int. 23(11):10630–10643. doi:10.1007/s11356-016-6329-6
  • Odjegba VJ, Fasidi IO. 2007. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist. 27(3):349–355. doi:10.1007/s10669-007-9047-2
  • Olivares-Rieumont S, Lima L, De la Rosa D, Graham DW, Columbie I, Santana JL, Sánchez MJ. 2007. Water hyacinths (Eichhornia crassipes) as indicators of heavy metal impact of a large landfill on the Almendares River near Havana, Cuba. Bull Environ Contam Toxicol. 79(6):583–587. doi:10.1007/s00128-007-9305-5
  • Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S. 1995. Responses of maize (Zea mays L.) plants to copper stress I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot. 35(2):167–176. doi:10.1016/0098-8472(94)00049-B
  • Pandey VC. 2016. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond. Int J Phytoremediat. 18(5):450–452. doi:10.1080/15226514.2015.1109605
  • Prasad B, Maiti D. 2016. Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and nonmining areas - a field study. Bioremediat J. 20(2):144–152. doi:10.1080/10889868.2015.1113924
  • Rai PK. 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediat. 10:131–158.
  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFMd, Taib SM, Sabbagh F, Sairan FMd. 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage. 163:125–133. doi:10.1016/j.jenvman.2015.08.018
  • Rowe DR, Abdel-Magid IM. 1995. Handbook of wastewater reclamation and reuse. Boca Raton (FL): CRC Press.
  • Saha P, Shinde O, Sarkar S. 2017. Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediat. 19(1):87–96. doi:10.1080/15226514.2016.1216078
  • Santamaria L, van Vierssen W. 1997. Photosynthetic temperature responses of fresh- and brackish- water macrophytes: a review. Aquat Bot. 58:135–150. doi:10.1016/S0304-3770(97)00015-6
  • Shaltout KH, Galal TM, El-Komi TM. 2010. Evaluation of the nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecol Med. 36:77–87. doi:10.1155/2009/862565.
  • Shaltout KH, Hosni HA, El-Kady HF, El-Beheiry MA, Shaltout SK. 2016. Composition and pattern of alien species in the Egyptian flora. Flora. 222:104–110. doi:10.1016/j.flora.2016.04.001
  • Shu X, Deng Q, Zhang Q, Wang W. 2015. Comparative responses of two water hyacinth (Eichhornia crassipes) cultivars to different planting densities. Aquat Bot. 121:1–8. doi:10.1016/j.aquabot.2014.10.007
  • Sidek NM, Abdullah SRS, Ahmad NU, Draman SFS, Rosli MMM, Sanusi MF. 2018. Phytoremediation of abandoned mining lake by water hyacinth and water lettuces in constructed wetlands. J Teknologi. 80:87–93.
  • Singh N, Ma LQ. 2007. Assessing plants for phytoremediation of arsenic-contaminated soils. In: Willey N, editor. Phytoremediation: methods and reviews. Totowa (NJ): Humana Press Inc. p.319–347.
  • Singh S, Saxena R, Pandey K, Bhatt K, Sinha S. 2004. Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere. 57(11):1663–1673. doi:10.1016/j.chemosphere.2004.07.049
  • Statsoft. 2007. Statistica version 7.1. Tulsa (OK): Statsoft Inc.
  • Taskila S, Tuomola M, Ojamo H. 2012. Enrichment cultivation in detection of food-borne Salmonella. Food Control. 26(2):369–377. doi:10.1016/j.foodcont.2012.01.043
  • Tessier A, Turner DR. 1995. Metal speciation and bioavailability in aquatic systems. London: Wiley.
  • UNESCO. 1977. Map of the world distribution of arid regions. Paris: MAB Technical Notes.
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. 16(7):765–794. doi:10.1007/s11356-009-0213-6
  • Victor KK, Séka Y, Norbert KK, Sanogo TA, Celestin AB. 2016. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediat. 18(10):949–955. doi:10.1080/15226514.2016.1183567
  • Weis JS, Glover T, Weis P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ Pollut. 131(3):409–415. doi:10.1016/j.envpol.2004.03.006
  • Weis JS, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 30(5):685–700. doi:10.1016/j.envint.2003.11.002
  • Wilson JR, Holst N, Rees M. 2005. Determinants and patterns of population growth in water hyacinth. Aquat Bot. 81(1):51–67. doi:10.1016/j.aquabot.2004.11.002
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259(1/2):181–189. doi:10.1023/B:PLSO.0000020956.24027.f2
  • Zahran MA, Willis AJ. 2009. The vegetation of Egypt. Heidelberg: Springer.
  • Zaranyika MF, Mutoko F, Murahwa H. 1994. Uptake of Zn, Co, Fe and Cr by water hyacinth (Eichhornia crassipes) in Lake Chivero, Zimbabwe. Sci Total Environ. 153(1-2):117–121. doi:10.1016/0048-9697(94)90108-2
  • Zhao F, Lombi E, McGrath S. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 249(1):37–43. doi:10.1023/A:1022530217289
  • Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int. 31(5):755–762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.