448
Views
27
CrossRef citations to date
0
Altmetric
Articles

The enhanced removal and phytodegradation of sodium dodecyl sulfate (SDS) in wastewater using controllable water hyacinth

, &

References

  • Adak A, Bandyopadhyay M, Pal A. 2005. Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep Purif Technol. 44(2):139–144. doi:10.1016/j.seppur.2005.01.002.
  • Alvarez JO, Schechter DS. 2017. Improving oil recovery in the Wolfcamp unconventional liquid reservoir using surfactants in completion fluids. J Petrol Sci Eng. 157:806–815. doi:10.1016/j.petrol.2017.08.004.
  • Bergero MF, Lucchesi GI. 2018. Degradation of cationic surfactants using immobilized bacteria: its effect on adsorption to activated sludge. J Biotechnol. 272–273:1–6. doi:10.1016/j.jbiotec.2018.03.003.
  • Boonyasuwat S, Chavadej S, Malakul P, Scamehorn JF. 2003. Anionic and cationic surfactant recovery from water using a multistage foam fractionator. Chem Eng J. 93(3):241–252. doi:10.1016/S1385-8947(03)00043-3.
  • Brisset JL, Fanmoe J, Eugen H. 2016. Degradation of surfactant by cold plasma treatment. J Environ Chem Eng. 4(1):385–387. doi:10.1016/j.jece.2015.11.011.
  • Bromberg L, Liu X, Wang I, Smith S, Schwicker K, Eller Z, German GK. 2017. Control of human skin wettability using the pH of anionic surfactant solution treatments. Colloid Surface B. 157:366–372. doi:10.1016/j.colsurfb.2017.06.009.
  • Brycki B, Waligórska M, Szulc A. 2014. The biodegradation of monomeric and dimeric alkylammonium surfactants. J Hazard Mater. 280:797–815. doi:10.1016/j.jhazmat.2014.08.021.
  • Cai R, Wang X, Ji XH, Peng B, Tan CY, Huang X. 2017. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth. J Environ Manage. 187:212–219. doi:10.1016/j.jenvman.2016.11.047.
  • Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E. 2014. Occurrence of surfactants in wastewater: hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). Sci Total Environ. 468-469:977–984. doi:10.1016/j.scitotenv.2013.09.020.
  • Caracciolo AB, Cardoni M, Pescatore T, Patrolecco L. 2017. Characteristics and environmental fate of the anionic surfactants sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunneling. Environ Pollut. 226:94–103. doi:10.1016/j.envpol.2017.04.008.
  • Chang CC, Tan HC, Cheng W. 2013. Effects of dietary administration of water hyacinth (Eichhornia crassipes) extracts on the immune responses and disease resistance of giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 35(1):92–100. doi:10.1016/j.fsi.2013.04.008.
  • Chiu CY, Chou CH. 1993. Oxidation in the rhizosphere of mangrove Kandelia candel seedlings. Soil Sci Plant Nutr. 39(4):725–731. doi:10.1080/00380768.1993.10419190.1
  • Gong Y, Zhou XR, Ma XM, Chen JP. 2018. Sustainable removal of formaldehyde using controllable water hyacinth. J Clean Prod. 181:1–7. doi:10.1016/j.jclepro.2018.01.220.
  • Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E. 2015. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J Environ Manage. 152:99–108. doi:10.1016/j.jenvman.2015.01.026.
  • Gunathilakae N, Yapa N, Hettiarachchi R. 2018. Effect of arbuscular mycorrhizal fungi on the cadmium phytoremediation potential of Eichhornia crassipes (Mart. Solms. Groundwater Sustain Dev. 7:477–482. ) doi:10.1016/j.gsd.2018.03.008.
  • Gupta A, Balomajumder C. 2015. Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Eng. 7:74–82. doi:10.1016/j.jwpe.2015.05.008.
  • Horváth O, Huszánk R. 2003. Degradation of surfactants by hydroxyl radicals photogenerated from hydroxoiron(III) complexes. Photochem Photobiol Sci. 2(9):960–966. doi:10.1039/b303697a.
  • Kirzhner F, Zimmels Y, Malkovskaja A, Starosvetsky J. 2009. Removal of microbial biofilm on water hyacinth plants roots by ultrasonic treatment. Ultrasonics. 49(2):153–158. doi:10.1016/j.ultras.2008.09.004.
  • Korzenowski C, Martins MBO, Bernardes AM, Ferreira JZ, Duarte ECNF, De Pinho MN. 2012. Evaluation of nanofiltration for the treatment of industrial effluents containing anionic surfactants. Procedia Eng. 44:1763–1764. doi:10.1016/j.proeng.2012.08.940.
  • Li XJ, Qin Y, Liu CZ, Jiang SS, Xiong L, Sun QJ. 2016. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: the effect of electrostatic repulsion or steric hindrance. Food Chem. 199(3618):356–363. doi:10.1016/j.foodchem.2015.12.037.
  • Limmer MA, Wilson J, Westenberg D, Lee A, Siegman M, Burken JG. 2018. Phytoremediation removal rates of benzene, toluene, and chlorobenzene. Int J Phytoremediation. 20(7):666–674. doi:10.1080/15226514.2017.1413330.
  • Ludwig-Müller J. 2003. Peroxidase isoenzymes as markers for the rooting ability of easy-to-root and difficult-to-root Grevillea species and cultivars of Protea obstusifolia (Proteaceae). In Vitro Cell Dev Biol Plant. 39(4):377–383. doi:10.1079/IVP2003423.1
  • Malar S, Vikram SS, Favas PJC, Perumal V. 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 55(1):54–64. doi:10.1186/s40529-014-0054-6.
  • Martínez-Carballo E, González-Barreiro C, Sitka A, Kreuzinger N, Scharf S, Gans O. 2007. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria. Environ Pollut. 146(2):543–547. doi:10.1016/j.envpol.2006.04.0331.
  • Melo RPF, Neto ELB, Nunes SKS, Dantas TNC, Neto A. 2018. Removal of reactive blue 14 dye using micellar solubilization followed by ionic flocculation of surfactants. Sep Purif Technol. 191:161–166. doi:10.1016/j.seppur.2017.09.029.1
  • Mohan SM. 2014. Use of naturalized coagulants in removing laundry waste surfactant using various unit processes in lab-scale. J Environ Manage. 136:103–111. doi:10.1016/j.jenvman.2014.02.004.
  • Mungray AK, Kumar P. 2009. Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeter Biodegr. 63(8):981–987. doi:10.1016/j.ibiod.2009.03.012.
  • Muramoto S, Oki Y. 1984. Influence of anionic surface-active agents on the uptake of heavy metals by water hyacinth (Eichhornia crassipes). Bull Environ Contam Toxicol. 33(1):444–450. doi:10.1007/BF01625568.1
  • Nayak AK, Panda SS, Basu A, Dhal NK. 2018. Enhancement of toxic Cr(VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat. 20(7):682–691. doi:10.1080/15226514.2017.1413332.
  • Önder E, Koparal AS, Öğütveren ÜB. 2007. An alternative method for the removal of surfactants from water: electrochemical coagulation. Sep Purif Technol. 52(3):527–532. doi:10.1016/j.seppur.2006.06.006.
  • Panizza M, Barbucci A, Delucchi M, Carpanese MP, Giuliano A, Cataldo-Hernández M, Cerisola G. 2013. Electro-Fenton degradation of anionic surfactants. Sep Purif Technol. 118:394–398. doi:10.1016/j.seppur.2013.07.023.1
  • Peng ZY, Darnault CJG, Tian FQ, Baveye PC, Hu HC. 2017. Influence of anionic surfactant on saturated hydraulic conductivity of loamy sand and sandy loam soils. Water. 9(6):433–447. doi:10.3390/w9060433.
  • Pintado-Herrera MG, Wang CC, Lu JT, Chang YP, Chen WF, Li XL, Lara-Martín PA. 2017. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China. J Hazard Mater. 323:128–138. doi:10.1016/j.jhazmat.2016.02.046.1
  • Pitman WD, Sotomayor-Rios A. 2000. Tropical forage plants: development and use. Boca Raton (FL): CRC Press.
  • Quan GM, Mao DJ, Zhang JE, Xie JF, Xu HQ, An M. 2015. Response of invasive Chromolaena odorata and two coexisting weeds to contrasting irradiance and nitrogen. Photosynthetica. 53(3):419–429. doi:10.1007/s11099-015-0137-y.
  • Ramprasad C, Philip L. 2018. Contributions of various processes to the removal of surfactants and personal care products in constructed wetland. Chem Eng J. 334:322–333. doi:10.1016/j.cej.2017.09.106.
  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM. 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage. 163:125–133. doi:10.1016/j.jenvman.2015.08.018.
  • Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J, Jiang Y, Keenan BG, Castle AB, Haskell RF, et al. 2010. Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol. 86(5):1387–1397. doi:10.1007/s00253-009-2431-8.
  • Rossi JE, Soule KJ, Cleveland E, Schmucker SW, Cress CD, Cox ND, Merrill A, Landi BJ. 2017. Removal of sodium dodecyl sulfate surfactant from aqueous dispersions of single-wall carbon nanotubes. J Colloid Interf Sci. 495:140–148. doi:10.1016/j.jcis.2017.01.117.
  • Salager JL. 2002. Surfactants – types and uses. FIRP Booklet #E300-A. http://www.firp.ula.ve/site/es/
  • Saleh HM. 2014. Stability of cemented dried water hyacinth used for biosorption of radionuclides under various circumstances. J Nucl Mater. 446(1–3):124–133. doi:10.1016/j.jnucmat.2013.11.038.
  • Salimizadeh M, Shirvani M, Shariatmadari H, Nikaeen M, Nozar S. 2018. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil. Int J Phytoremediation. 20(7):658–665. doi:10.1080/15226514.2017.1393388.
  • Shu X, Deng Q, Zhang QF, Wang WB. 2015. Comparative responses of two water hyacinth (Eichhornia crassipes) cultivars to different planting densities. Aquat Bot. 121:1–8. doi:10.1016/j.aquabot.2014.10.007.
  • Stefania G, Lucaciu I, Paun I, Stoica C, Stanescu E. 2013. Ecotoxicological behavior of some cationic and amphoteric surfactants (biodegradation, toxicity and risk assessment. Contraception. 89(4):237–241. doi:10.5772/56199.
  • Tian HF, Liang Y, Zhu TL, Zeng XL, Sun YF. 2018. Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil. Chemosphere. 195:585–593. doi:10.1016/j.chemosphere.2017.12.070.
  • You WH, Yu D, Xie D, Yu LF, Xiong W, Han CM. 2014. Responses of the invasive aquatic plant water hyacinth to altered nutrient levels under experimental warming in China. Aquat Bot. 119:51–56. doi:10.1016/j.aquabot.2014.06.004.
  • Zhang DQ, Hua T, Gersberg RM, Zhu JF, Ng WJ, Tan SK. 2012. Fate of diclofenac in wetland mesocosms planted with Scirpus validus. Ecol Eng. 49:59–64. doi:10.1016/j.ecoleng.2012.08.018.
  • Zhu FJ, Ma WL, Xu TF, Ding Y, Zhao X, Li WL, Liu LY, Song WW, Li YF, Zhang ZF. 2018. Removal characteristics of surfactants in typical industrial and domestic wastewater treatment plants in Northeast China. Ecotox Environ Safe. 153:84–90. doi:10.1016/j.ecoenv.2018.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.