3,725
Views
23
CrossRef citations to date
0
Altmetric
Articles

Right on target: using plants and microbes to remediate explosives

&

References

  • Albright R. 2012. Cleanup of chemical and explsosive munitions, vol 2nd Edition. Kidlington, UK: Elsevier.
  • Ali A, Zinnert JC, Muthukumar B, Peng Y, Chung SM, Stewart CN Jr. 2014. Physiological and transcriptional responses of Baccharis halimifolia to the explosive “composition B” (RDX/TNT) in amended soil. Environ Sci Pollut Res Int. 21(13):8261–8270. doi:10.1007/s11356-014-2764-4.
  • Arbeli Z, Garcia-Bonilla E, Pardo C, Hidalgo K, Velásquez T, Peña L, Ramos EC, Avila-Arias H, Molano-Gonzalez N, Brandão PFB, et al. 2016. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. Environ Sci Pollut Res Int. 23(9):9144–9155. doi:10.1007/s11356-016-6133-3.
  • Arthur JD, Mark NW, Taylor S, Šimůnek J, Brusseau ML, Dontsova KM. 2018. Dissolution and transport of insensitive munitions formulations IMX-101 and IMX-104 in saturated soil columns. Sci of the Total Envir. 624:758–768. doi:10.1016/j.scitotenv.2017.11.307.
  • Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. 2008. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 151(2–3):289–305. doi:10.1016/j.jhazmat.2007.10.039.
  • BCC Research LLC. 2018. Global market for explosives to gain $7.4 billion from 2017–2022 [Accessed 2018 June 6]. https://www.bccresearch.com/pressroom/chm/global-market-for-explosives-to-gain-$74-billion-from-2017-2022.
  • Becker NM. 1995. Fate of selected high explosives in the environment: a literature review. Los Alamos, NM: Los Alamos National Laboratory.
  • Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC. 2009. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol. 151(1):253–261. doi:10.1104/pp.109.141598.
  • Bhatnagar N, Kamath G, Potoff JJ. 2013. Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys. 15(17):6467–6474. doi:10.1039/c3cp44284e.
  • Bhattacherjee A, Mandal RS, Das S, Kundu S. 2014. Sequence and 3D structure based analysis of TNT degrading proteins in Arabidopsis thaliana. J Molec Modeling. 20:2174. doi:10.1007/s00894-014-2174-z.
  • Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J. 2002a. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol. 36:3104–3108. doi:10.1021/es011460a.
  • Bhushan B, Halasz A, Spain JC, Hawari J. 2002b. Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism. Biochem Biophys Res Commun. 296(4):779–784. doi:10.1016/S0006-291X(02)00874-4.
  • Boddu VM, Abburi K, Maloney SW, Damavarapu R. 2008. Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J Chem Eng Data. 53:1120–1125. doi:10.1021/je7006764.
  • Callaway E. 2018. CRISPR plants now subject to tough GM laws in European Union. Nature. 560(7716):16. doi:10.1038/d41586-018-05814-6.
  • Chaturvedi S, Dave PN. 2015. Solid propellants: AP/HTPB composite propellants. Arabian J of Chem. In Press. doi:10.1016/j.arabjc.2014.12.033.
  • Clausen J, Robb J, Curry D, Korte N. 2004. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut. 129(1):13–21. doi:10.1016/j.envpol.2003.10.002.
  • Correa-Torres SN, Pacheco-Londono LC, Espinosa-Fuentes EA, Rodriguez L, Souto-Bachiller FA, Hernandez-Rivera SP. 2012. TNT removal from culture media by three commonly available wild plants growing in the Caribbean. JEM. 14:30–33. doi:10.1039/C1EM10602C.
  • Crocker F, Indest K, Fredrickson H. 2006. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol. 73(2):274–290. doi:10.1007/s00253-006-0588-y.
  • Crocker FH, Indest KJ, Jung CM, Hancock DE, Fuller ME, Hatzinger PB, Vainberg S, Istok JD, Wilson E, Michalsen MM. 2015. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 26(6):443–451. doi:10.1007/s10532-015-9746-1.
  • Defense Science Board Task Force. 1998. Task force on unexploded ordnance (UXO) clearance, active range UXO clearance, and explosive ordnance disposal (EOD) programs. Washington, DC, US: Office of the Undersecretary of Defense for Aquisition and Technology.
  • Dessaux Y, Grandclement C, Faure D. 2016. Engineering the Rhizosphere. Trends Plant Sci. 21(3):266–278. doi:10.1016/j.tplants.2016.01.002.
  • Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI. 2013. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater. 262:143–150. doi:10.1016/j.jhazmat.2013.08.043.
  • Duringer JM, Morrie Craig A, Smith DJ, Chaney RL. 2010. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses. Environ Sci Technol. 44(16):6325–6330. doi:10.1021/es903671n.
  • Eaton HL, De Lorme M, Chaney RL, Craig AM. 2011. Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Microb Ecol. 62(2):274–286. doi:10.1007/s00248-011-9809-8.
  • Eaton HL, Duringer JM, Murty LD, Craig AM. 2013. Anaerobic bioremediation of RDX by ovine whole rumen fluid and pure culture isolates. Appl Microbiol Biotechnol. 97(8):3699–3710. doi:10.1007/s00253-012-4172-3.
  • Eberly JO, Indest KJ, Hancock DE, Jung CM, Crocker FH. 2016. Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO). J Ind Microbiol Biotechnol. 43(6):795–805. doi:10.1007/s10295-016-1755-5.
  • Eisentraeger A, Reifferscheid G, Dardenne F, Blust R, Schofer A. 2007. Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis. Environ Toxicol Chem. 26(4):634–646. doi:10.1897/06-285R.1.
  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JF. 2003. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol. 133(3):1397–1406. doi:10.1104/pp.103.028019.
  • Esteve-Nunez A, Caballero A, Ramos JL. 2001. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev. 65(3):335–352. doi:10.1128/MMBR.65.3.335-352.2001.
  • Fida TT, Palamuru S, Pandey G, Spain JC. 2014. Aerobic biodegradation of 2,4-dinitroanisole by Nocardioides sp. strain JS1661. Appl Environ Microbiol. 80(24):7725–7731. doi:10.1128/AEM.02752-14.
  • Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL. 2017. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 38:155–163. doi:10.1016/j.pbi.2017.04.018.
  • Fuller M, McClay K, Hawari J, Paquet L, Malone T, Fox B, Steffan R. 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol. 84(3):535–544. doi:10.1007/s00253-009-2024-6.
  • Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Alon Blakeney G, et al. 2017. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol. 101(13):5557–5567. doi:10.1007/s00253-017-8269-6.
  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC. 2008. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J. 56(6):963–974. doi:10.1111/j.1365-313X.2008.03653.x.
  • Gong P, Guan X, Pirooznia M, Liang C, Perkins EJ. 2012. Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida. Environ Sci Technol. 46(2):1223–1232. doi:10.1021/es203642e.
  • Gorecki S, Nesslany F, Hube D, Mullot JU, Vasseur P, Marchioni E, Camel V, Noel L, Le Bizec B, Guerin T, et al. 2017. Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Sci Tot Env. 599–600:314–323. doi:10.1016/j.scitotenv.2017.04.213.
  • Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Rylott EL, Bruce NC. 2014. Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2,4,6-trinitrotoluene. Plant Physiol. 165(2):854–865. doi:10.1104/pp.114.237180.
  • Hagan FL, Koeser AK, Dawson JO. 2016. Growth changes of eighteen herbaceous angiosperms induced by Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil. Int J Phytoremediation. 18(1):94–102. doi:10.1080/15226514.2015.1073665.
  • Halasz A, Hawari J, Perreault NN. 2018. New insights into the photochemical degradation of the insensitive munition formulation IMX-101 in water. Environ Sci Technol. 52(2):589–596. doi:10.1021/acs.est.7b04878.
  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S. 1999. Biotransformation of 2, 4, 6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Env Microbiol. 65(7):2977–2986. doi:10.1007/s002530000445.
  • Hawari J, Monteil-Rivera F, Perreault NN, Halasz A, Paquet L, Radovic-Hrapovic Z, Deschamps S, Thiboutot S, Ampleman G. 2015. Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23. doi:10.1016/j.chemosphere.2014.05.047.
  • Hawari J, 2014. Environmental fate and ecological impact of emerging energetic chemicals (ADN, DNAN and its amino-derivatives, PETN, NTO,NQ, FOX-7 and FOX-12) and insensitive formulation. Montreal, Canada: EME NRC-Montreal.
  • Hou D, Li F. 2017. Complexities surrounding China’s soil action plan. Land Degrad Develop. 28:2315–2320. doi:10.1002/ldr.2741.
  • Jackson R, Rylott E, Fournier D, Hawari J, Bruce N. 2007. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XpIA/B. PNAS. 104(43):16822–16827. doi:10.1073/pnas.0705110104.
  • Jiamjitrpanich W, Parkpian P, Polprasert C, Laurent F, Kosanlavit R. 2012. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil. J Env Sci Health Part A, Toxic/Hazardous Subst Env Eng. 47(11):1506–1513. doi:10.1080/10934529.2012.680320.
  • Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC. 2015. Monodehydroascorbate reductase mediates TNT toxicity in plants. Science. 349(6252):1072–1075. doi:10.1126/science.aab3472.
  • Johnson GR, Spain JC. 2003. Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol. 62(2–3):110–123. doi:10.1007/s00253-003-1341-4.
  • Kalderis D, Juhasz A, Boopathy R, Comfort SD. 2011. Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). Pure & Applied Chem. 83(7):1407–1484. doi:10.1351/PAC-REP-10-01-05.
  • Karthikeyan S, Spain JC. 2016. Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp. JS1661 in water, soil and bioreactors. J Hazard Mater. 312:37–44. doi:10.1016/j.jhazmat.2016.03.029.
  • Katseanes CK, Chappell MA, Hopkins BG, Durham BD, Price CL, Porter BE, Miller LF. 2017. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils. J Environ Management. 203:383–390. doi:10.1016/j.jenvman.2017.08.005.
  • Kennen K, Kirkwood N. 2015. Phyto: principles and resources for site remediation and landscape design. London, UK: Taylor & Francis Group. doi:10.4324/9781315746661.
  • Khilyas IV, Lochnit G, Ilinskaya ON. 2017. Proteomic analysis of 2,4,6-trinitrotoluene degrading yeast Yarrowia lipolytica. Front Microbiol. 8:2600.doi:10.3389/fmicb.2017.02600.
  • Kloepper JW, Leong J, Teintze M, Schroth MN. 1980. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol. 4(5):317–320. doi:10.1007/BF02602840.
  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E. 2015. Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol. 32:186–194. doi:10.1016/j.copbio.2014.12.024.
  • Lamichhane KM, Babcock RW, Jr., Turnbull SJ, Schenck S. 2012. Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Hazard Mater. 243:334–339. doi:10.1016/j.jhazmat.2012.10.043.
  • Le Campion L, Delaforge M, Noel JP, Ouazzani J. 1997. Metabolism of 14C-labelled 5-nitro-1,2,4-triazol-3-one by rat liver microsomes–evidence for the participation of cytochrome P-450. Eur J Biochem. 248(2):401–406. doi:10.1111/j.1432-1033.1997.00401.x.
  • Le Campion L, Vandais A, Ouazzani J. 1999. Microbial remediation of NTO in aqueous industrial wastes. FEMS Microbiol Lett. 176(1):197–203. doi:10.1111/j.1574-6968.1999.tb13662.x.
  • Liang J, Olivares C, Field JA, Sierra-Alvarez R. 2013. Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater. 262:281–287. doi:10.1016/j.jhazmat.2013.08.046.
  • Lorenz A, Rylott EL, Strand SE, Bruce NC. 2013. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. FEMS Microbiol Lett. 340(1):49–54. doi:10.1111/1574-6968.12072.
  • Lotufo GR, Biedenbach JM, Sims JG, Chappell P, Stanley JK, Gust KA. 2015. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem. 34(4):880–886. doi:10.1002/etc.2863.
  • Madeira CL, Speet SA, Nieto CA, Abrell L, Chorover J, Sierra-Alvarez R, Field JA. 2017. Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere 167:478–484. doi:10.1016/j.chemosphere.2016.10.032.
  • Maestri E, Marmiroli N. 2011. Transgenic plants for phytoremediation. Int J Phytoremed. 13(1):264–279. doi:10.1080/15226514.2011.568549.
  • Margot A. 2009. Environmentalists adopt new weapon: seed balls. National Public Radio. 18 June 2018.
  • Mezzari MP, Walters K, Jelinkova M, Shih MC, Just CL, Schnoor JL. 2005. Gene expression and microscopic analysis of arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol. 138(2):858–869. doi:10.1104/pp.104.056168.
  • Michalsen MM, King AS, Rule RA, Fuller ME, Hatzinger PB, Condee CW, Crocker FH, Indest KJ, Jung CM, Istok JD. 2016. Evaluation of biostimulation and bioaugmentation to stimulate hexahydro-1,3,5-trinitro-1,3,5,-triazine degradation in an aerobic groundwater aquifer. Environ Sci Technol. 50(14):7625–7632. doi:10.1021/acs.est.6b00630.
  • Musdal Y, Mannervik B. 2015. Substrate specificities of two tau class glutathione transferases inducible by 2,4,6-trinitrotoluene in poplar. Biochim Biophys Acta. 1850(9):1877–1883. doi:10.1016/j.bbagen.2015.05.015.
  • Naumann JC, Anderson JE, Young DR. 2010. Remote detection of plant physiological responses to TNT soil contamination. Plant Soil. 329(1–2):239–248. doi:10.1007/s11104-009-0148-1.
  • Nishino SF, Paoli GC, Spain JC. 2000. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol. 66(5):2139–2147. doi:10.1128/AEM.66.5.2139-2147.2000.
  • Olivares CI, Abrell L, Khatiwada R, Chorover J, Sierra-Alvarez R, Field JA. 2016. (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. J Hazard Mater. 304:214–221. doi:10.1016/j.jhazmat.2015.10.059.
  • Olivares CI, Liang J, Abrell L, Sierra-Alvarez R, Field JA. 2013. Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge. Biotechnol Bioeng. 110(6):1595–1604. doi:10.1002/bit.24820.
  • Olivares CI, Madeira CL, Sierra-Alvarez R, Kadoya W, Abrell L, Chorover J, Field JA. 2017. Environmental fate of 14C radiolabeled 2,4-dinitroanisole in soil microcosms. Environ Sci Technol. 51(22):13327–13334. doi:10.1021/acs.est.7b03699.
  • Panja S, Sarkar D, Datta R. 2018. Vetiver grass (Chrysopogon zizanioides) is capable of removing insensitive high explosives from munition industry wastewater. Chemosphere 209:920–927. doi:10.1016/j.chemosphere.2018.06.155.
  • Panz K, Miksch K. 2012. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage. 113:85–92. doi:10.1016/j.jenvman.2012.08.016.
  • Paquet L, Monteil-Rivera F, Hatzinger PB, Fuller ME, Hawari J. 2011. Analysis of the key intermediates of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation. J Environ Monit. 13(8):2304–2311. doi:10.1039/c1em10329f.
  • Perreault NN, Manno D, Halasz A, Thiboutot S, Ampleman G, Hawari J. 2012. Aerobic biotransformation of 2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation. 23(2):287–295. doi:10.1007/s10532-011-9508-7.
  • Pichtel J. 2012. Distribution and fate of military explosives and propellants in soil: a review. Appl Env Soil Sci. 2012:1–33. doi:10.1155/2012/617236.
  • Platten WE, 3rd, Bailey D, Suidan MT, Maloney SW. 2010. Biological transformation pathways of 2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors. Chemosphere 81(9):1131–1136. doi:10.1016/j.chemosphere.2010.08.044.
  • Qasim M, Gorb L, Magers D, Honea P, Leszczynski J, Moore B, Taylor L, Middleton M. 2009. Structure and reactivity of TNT and related species: application of spectroscopic approaches and quantum-chemical approximations toward understanding transformation mechanisms. J Hazard Mater. 167(1–3):154–163. doi:10.1016/j.jhazmat.2008.12.105.
  • Richard T, Weidhaas J. 2014a. Biodegradation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater. 280:372–379. doi:10.1016/j.jhazmat.2014.08.019.
  • Richard T, Weidhaas J. 2014b. Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater. 280:561–569. doi:10.1016/j.jhazmat.2014.08.042.
  • Robertson BK, Jjemba PK. 2005. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58(3):263–270. doi:10.1016/j.chemosphere.2004.08.080.
  • Rylott E, Bruce N. 2009. Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends in biotechnol. 27(2):73–81. doi:10.1016/j.tibtech.2008.11.001.
  • Rylott E, Jackson R, Sabbadin F, Seth-Smith H, Edwards J, Chong C, Strand S, Grogan G, Bruce N. 2011. The explosive-degrading cytochrome P450 XplA: Biochemistry, structural features and prospects for bioremediation. Biochimica Et Biophysica Acta-Proteins and Proteomics 1814(1):230–236. doi:10.1016/j.bbapap.2010.07.004.
  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC. 2011. Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol. 192(2):405–413. doi:10.1111/j.1469-8137.2011.03807.x.
  • Rylott EL, Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Bruce NC. 2015. Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene. Plant Signal Behav. 10(1):e977714. doi:10.4161/15592324.2014.977714.
  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC. 2006. An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol. 24(2):216–219. doi:10.1038/nbt1184.
  • Rylott EL, Johnston EJ, Bruce NC. 2015. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants–a viable technology? EXBOTJ. 66(21):6519–6533. doi:10.1093/jxb/erv384.
  • Rylott EL, Lorenz A, Bruce NC. 2011. Biodegradation and biotransformation of explosives. Curr Opin Biotechnol. 22(3):434–440. doi:10.1016/j.copbio.2010.10.014.
  • Schoenmuth B, Mueller JO, Scharnhorst T, Schenke D, Buttner C, Pestemer W. 2014. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environ Sci Pollut Res Int. 21(5):3733–3743. doi:10.1007/s11356-013-2306-5.
  • Schoenmuth BW, Pestemer W. 2004. Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees. Environ Sci & Pollut Res. 11(5):331–339. doi:10.1007/BF02979648.
  • Schroer HW, Langenfeld KL, Li X, Lehmler H-J, Just CL. 2015. Stable isotope-enabled pathway elucidation of 2,4-dinitroanisole metabolized by Rhizobium lichtii. Env Sci Technol Lett. 2(12):362–366. doi:10.1021/acs.estlett.5b00278.
  • Schroer HW, Langenfeld KL, Li X, Lehmler HJ, Just CL. 2017. Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp. Biodegradation 28(1):95–109. doi:10.1007/s10532-016-9780-7.
  • Schroer HW, Li X, Lehmler HJ, Just CL. 2017. Metabolism and photolysis of 2,4-dinitroanisole in Arabidopsis. Environ Sci Technol. 51(23):13714–13722. doi:10.1021/acs.est.7b04220.
  • Sens C, Scheidemann P, Klunk A, Werner D. 1998. Distribution of 14C TNT and derivatives in different biochemical compartments of Phaseolus vulgaris. Environ Sci & Pollut Res. 5(4):202–208. doi:10.1007/BF02986402.
  • Sens C, Scheidemann P, Werner D. 1999. The distribution of 14C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environ Pollut. 104(1):113–119. doi:10.1016/S0269-7491(98)00142-0.
  • Smith DJ, Craig AM, Duringer JM, Chaney RL. 2008. Absorption, tissue distribution, and elimination of residues after 2,4,6-trinitro[14C]toluene administration to sheep. Environ Sci Technol. 42(7):2563–2569. doi:10.1021/es702601n.
  • Spain JC, Hughes JB, Knackmuss HJ. 2000. Biodegradation of nitroaromatic compounds and explosives. Boca Raton, Florida: Lewis.
  • Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Van Aken B. 2007. Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Int J Phytoremed. 9(1):15–30. doi:10.1080/15226510601139375.
  • Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. 2018. The Sycamore Maple bacterial culture collection from a TNT polluted site shows novel plant-growth promoting and explosives degrading bacteria. Frontiers Plant Sci. 9(1134) doi:10.3389/fpls.2018.01134.
  • Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M, D´Haen J, Carleer R, Weyens N, Ameloot M, Ramos J-L, Vangronsveld J. 2014. Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil. 385(1–2):15–36. doi:10.1007/s11104-014-2260-0.
  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J. 2014. Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microbial Biotechnol. 7(4):294–306. doi:10.1111/1751-7915.12111.
  • Toghiani RK, Toghiani H, Maloney SW, Boddu VM. 2008. Prediction of physicochemical properties of energetic materials. Fluid Phase Equilibria. 264(1–2):86–92. doi:10.1016/j.fluid.2007.10.018.
  • Tzafestas K, Razalan MM, Gyulev I, Mazari AM, Mannervik B, Rylott EL, Bruce NC. 2017. Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene. New Phytol. 214(1):294–303. doi:10.1111/nph.14326.
  • Tzafestas K, Ahmad LM, Dani MP, Grogan G, Rylott EL, Bruce NC. 2018. Structure-guided mechanisms behind the metabolism of 2,4,6-trinitrotoluene by glutathione transferases U25 and U24 that lead to alternate product distribution Frontiers Plant Sci. In Press.
  • United States General Accounting Office, Department of Defense Operational Ranges: More Reliable Cleanup Cost Estimates and a Proactive Approach to Identifying Contamination Are Needed, GAO-04-601 (Washington D.C.: May 2004). https://www.gao.gov/products/GAO-04-601
  • Valli K, Brock BJ, Joshi DK, Gold MH. 1992. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 58(1):221–228.
  • Van Aken B. 2008. Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnol. 26(5):225–227. doi:10.1016/j.tibtech.2008.02.001.
  • Van Aken B. 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Op Biotechnol. 20(2):231–236. doi:10.1016/j.copbio.2009.01.011.
  • Van Aken B, Yoon JM, Just CL, Schnoor JL. 2004. Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34). Environ Sci Technol. 38(17):4572–4579. doi:10.1021/es049837a.
  • van Dillewijn P, Couselo J, Corredoira E, Delgado A, Wittich R, Ballester A, Ramos J. 2008. Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol. 42(19):7405–7410. doi:10.1021/es801231w.
  • Via SM, Zinnert JC. 2016. Impacts of explosive compounds on vegetation: a need for community scale investigations. Environ Pollut. 208(Pt B):495–505. doi:10.1016/j.envpol.2015.10.020.
  • Via SM, Zinnert JC, Young DR. 2015. Differential effects of two explosive compounds on seed germination and seedling morphology of a woody shrub, Morella cerifera. Ecotoxicology 24(1):194–201. doi:10.1007/s10646-014-1372-x.
  • Via SM, Zinnert JC, Young DR. 2017. Multiple metrics quantify and differentiate responses of vegetation to composition B. Int J Phytoremediation. 19(1):56–64. doi:10.1080/15226514.2016.1216080.
  • Vila M, Pascal-Lorber S, Rathahao E, Debrauwer L, Canlet C, Laurent F. 2005. Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension cultures. Environ Sci Technol. 39:663–672.
  • Weidhaas J, Panaccione A, Bhattacharjee AS, Goel R, Anderson A, Acharya SP. 2018. Whole community transcriptome of a sequencing batch reactor transforming 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). Biodegradation. 29(1):71–88. doi:10.1007/s10532-017-9814-9.
  • Wijker RS, Bolotin J, Nishino SF, Spain JC, Hofstetter TB. 2013. Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface. Environ Sci Technol. 47(13):6872–6883. doi:10.1021/es3051845.
  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC. 2004. Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol. 70(6):3566–3574. doi:10.1128/AEM.70.6.3566-3574.2004.
  • Wittich R, Ramos J, van Dillewijn P. 2009. Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-Source for growth. Environ Sci Technol. 43(8):2773–2776. doi:10.1021/es803372n.
  • Wittich RM, Haidour A, Van Dillewijn P, Ramos JL. 2008. OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol. 42(3):734–739. doi:10.1021/es071449w.
  • Wu H, Lai C, Zeng G, Liang J, Chen J, Xu J, Dai J, Li X, Liu J, Chen M, et al. 2017. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol. 37(6):754–764. doi:10.1080/07388551.2016.1232696.
  • Yamamoto H, Morley MC, Speitel GE, Clausen JAY. 2004. Fate and transport of high explosives in a sandy soil: adsorption and desorption. Soil Sedi Contam: An Int J. 13(5):361–379. doi:10.1080/10588330490500419.
  • Zhang L, Routsong R, Nguyen Q, Rylott EL, Bruce NC, Strand SE. 2017. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges. Plant Biotechnol J. 15(5):624–633. doi:10.1111/pbi.12661.
  • Zhang L, Rylott EL, Bruce NC, Strand SE. 2017. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase. Plant Mol Biol. 95(1–2):99–109. doi:10.1007/s11103-017-0639-z.
  • Zhang L, Rylott EL, Bruce NC, Strand SE. 2018. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. Planta. 249:1007–1015. doi:10.1007/s00425-018-3057-9.