216
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation method for the measuring comprehensive suitability of chelating agents: a study of the temporal dynamics of heavy metal activation

, , , , , , , & show all

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Begum ZA, Rahman IMM, Tate Y, Egawa Y, Maki T, Hasegawa H. 2012. Formation and stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with biodegradable aminopolycarboxylate chelants (dl-2-(2-carboxymethyl)nitrilotriacetic acid, GLDA, and 3-hydroxy-2,2′-iminodisuccinic acid, HIDS) in aqueous so. J Solution Chem. 41(10):1713–1728. doi:10.1007/s10953-012-9901-9.
  • Bucheli-Witschel M, Egli T. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev. 25(1):69–106. doi:10.1111/j.1574-6976.2001.tb00572.x.
  • Chiu KK, Ye ZH, Wong MH. 2005. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere. 60(10):1365–1375. doi:10.1016/j.chemosphere.2005.02.035.
  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M. 2008. Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater. 152(1):1–31. doi:10.1016/j.jhazmat.2007.10.043.
  • Ding YZ, Song ZG, Feng RW, Guo JK. 2014. Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils. Int J Environ Sci Technol. 11(1):33–42. doi:10.1007/s13762-013-0433-7.
  • Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C. 2008. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ. 401(1–3):21–28. doi:10.1016/j.scitotenv.2008.03.024.
  • Evangelou MWH, Ebel M, Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68(6):0–1003. doi:10.1016/j.chemosphere.2007.01.062.
  • Fang L, Wang M, Cai L, Cang L. 2017. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils. Environ Sci Pollut R. 24:14627–14636. doi:10.1007/s11356-017-9029-y.
  • Freitas EV, Nascimento C. 2016. Degradability of natural and synthetic chelating agents applied to a lead-contaminated soil. J Soil Sediment. 17:1272–1278.
  • Gao Y, Miao C, Xia J, Luo C, Mao L, Zhou P, Shi W. 2012. Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cd and Pb combined pollution. Environ Earth Sci. 65(7):1923–1932. doi:10.1007/s12665-011-1174-x.
  • Garbisu C, Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technol. 77(3):229–236. doi:10.1016/S0960-8524(00)00108-5.
  • Gong Y, Zhao D, Wang Q. 2018. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res. 147:440–460. doi:10.1016/j.watres.2018.10.024.
  • González I, Cortes A, Neaman A, Rubio P. 2011. Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils. Chemosphere. 84(4):490–496. doi:10.1016/j.chemosphere.2011.03.015.
  • Guo X, Zhang G, Wei Z, Zhang L, He Q, Wu Q, Qian T. 2017. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J Soil Sediment. 18:835–844. doi:10.1007/s11368-017-1781-6.
  • Hadi F, Bano A, Fuller MP. 2010. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere. 80(4):457–462. doi:10.1016/j.chemosphere.2010.04.020.
  • Hansen HK, Rojo A, Gutiérrez C, Jensen PE, Ottosen LM. 2016. Electrokinetic remediation of copper mine tailings: evaluating different alternatives for the electric field. In: Ribeiro AB, Mateus EP, Couto N, editors. Electrokinetics across disciplines and continents. Chile (South America): Springer. p. 143–159.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2016. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi:10.1016/j.gexplo.2016.11.021.
  • Kołodyńska D. 2011. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination. 267(2–3):175–183. doi:10.1016/j.desal.2010.09.022.
  • Lan J, Zhang S, Lin H, Li T, Xu X, Li Y, Jia Y, Gong G. 2013. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere. 91(9):1362–1367. doi:10.1016/j.chemosphere.2013.01.116.
  • Leštan D, Luo CL, Li XD. 2008. The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut. 153(1):3–13. doi:10.1016/j.envpol.2007.11.015.
  • Li ZP, Liu M, Jiang CY. 2015. Decomposition, accumulation and distribution of soil organic matter in typical red soil region of China. Soils. 47(2):220–228.
  • Liu SJ, Jiang JY, Wang S, Guo YP, Ding H. 2018. Assessment of water-soluble thiourea-formaldehyde (WTF) resin for stabilization/solidification (S/S) of heavy metal contaminated soils. J Hazard Mater. 346:167–173. doi:10.1016/j.jhazmat.2017.12.022.
  • Lu Y, Luo D, An L, Liu G, Liu L, Long J, Zhang H, Chen Y. 2017. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Environ Sci Pollut Res Int. 24:1845–1853. doi:10.1007/s11356-016-7972-7.
  • Luo C, Shen Z, Li X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59(1):1–11. doi:10.1016/j.chemosphere.2004.09.100.
  • Luo CL, Shen ZG, Li XD. 2008. Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut. 188(1–4):127–137. doi:10.1007/s11270-007-9529-3.
  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58(8):1011. doi:10.1016/j.chemosphere.2004.09.047.
  • Ministry of Environmental Protection of the People’ Republic of China, Ministry of Land and Resources of the People’s Republic of China. 2014. Report on the national general survey of soil contamination. China: The State Council of the People’s Republic of China [accessed 2014 Apr 17]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm.
  • Naghipour D, Jaafari J, Ashrafi SD, Mahvi AH. 2017. Remediation of heavy metals contaminated silty clay loam soil by column extraction with ethylene diamine tetraacetic acid and nitrilo triacetic acid. J Environ Eng. 143(8):04017026. doi:10.1061/(ASCE)EE.1943-7870.0001219.
  • Nörtemann B. 2005. Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. ACS symposium series, p. 150–170.
  • Pinto IS, Neto IF, Soares HM. 2014. Biodegradable chelating agents for industrial, domestic, and agricultural applications–a review. Environ Sci Pollut Res. 21(20):11893–11906. doi:10.1007/s11356-014-2592-6.
  • Qiao J, Sun H, Luo X, Zhang W, Mathews S, Yin X. 2017. EDTA-assisted leaching of Pb and Cd from contaminated soil. Chemosphere. 167:422–428. doi:10.1016/j.chemosphere.2016.10.034.
  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Song Y, Ammami MT, Benamar A, Mezazigh S, Wang H. 2016. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ Sci Pollut Res. 23(11):10577–10586. doi:10.1007/s11356-015-5966-5.
  • Sun B, Zhao FJ, Lombi E, McGrath SP. 2001. Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut. 113(2):111–120. doi:10.1016/S0269-7491(00)00176-7.
  • Wang A, Luo C, Yang R, Chen Y, Shen Z, Li X. 2012. Metal leaching along soil profiles after the EDDS application-a field study. Environ Pollut. 164:204–210. doi:10.1016/j.envpol.2012.01.031.
  • Wang AS, Angle JS, Chaney RL, Delorme TA, Mcintosh M. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem. 38(6):1451–1461. doi:10.1016/j.soilbio.2005.11.001.
  • Wang G, Zhang S, Zhong Q, Xu X, Li T, Jia Y, Zhang Y, Peijnenburg W, Vijver MG. 2018. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci Total Environ. 625:1021–1029. doi:10.1016/j.scitotenv.2018.01.019.
  • Wang SQ, Chang-Yu HU, Cheng DH, Liao WY, Na LI, Chen L, Fang JY. 2011. Effects of adjusting pH of tea plantation soil on indigenous microbial fauna and physiological group. Soils. 43(1):76–80.
  • Wei ZB, Chen XH, Wu QT, Tan M. 2015. Enhanced phytoextraction of heavy metals from contaminated soils using Sedum alfredii hance with biodegradable chelate GLDA. Environ Sci. 36:1864.
  • Wen J, Stacey SP, Mclaughlin MJ, Kirby JK. 2009. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem. 41(10):2214–2221. doi:10.1016/j.soilbio.2009.08.006.
  • Wu LH, Luo YM, Xing XR, Christie P. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr Ecosyst Environ. 102(3):307–318. doi:10.1016/j.agee.2003.09.002.
  • Wu Q, Cui Y, Li Q, Sun J. 2015. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J Hazard Mater. 283:748–754. doi:10.1016/j.jhazmat.2014.10.027.
  • Yaghmaeian K, Jaafari J. 2018. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) algae cells using response surface methodology (RSM). Chemosphere. 217:447–455. doi:10.1016/j.chemosphere.2018.10.205.
  • Yip TC, Yan DY, Yui MM, Tsang DC, Lo IM. 2010. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture. Chemosphere. 80(4):416–421. doi:10.1016/j.chemosphere.2010.03.033.
  • Zhao Z, Xi M, Jiang G, Liu X, Bai Z, Huang Y. 2010. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). J Hazard Mater. 181(1–3):455–459. doi:10.1016/j.jhazmat.2010.05.032.
  • Zhou JM, Dang Z, Tao XQ, Zhou YZ. 2005. Influence of NTA on accumulation and subcellular distribution of copper and zinc in corn (Zea mays). Environ Sci. 26:126–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.