408
Views
18
CrossRef citations to date
0
Altmetric
Articles

Rhizosphere mediated biodegradation of benzo(A)pyrene by surfactin producing soil bacilli applied through Melia azedarach rhizosphere

&

References

  • Alvarez VM, Jurelevicius D, Marques JM, de Souza PM, de Araújo LV, Barros TG, Souza R, Freire DMG, Seldin L. 2015. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids Surf B Biointerf. 136:14–21. doi:10.1016/j.colsurfb.2015.08.046.
  • Anyanwu U, Chukwudi U. 2010. Surface activity of extracellular products of a Pseudomonas aeruginosa isolated from petroleum contaminated soil. Inter. J Environ Sci. 1:225.
  • Aparna A, Srinikethan G, Smitha H. 2012. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerf. 95:23–29. doi:10.1016/j.colsurfb.2012.01.043.
  • Aziz A, Agamuthu P, Alaribe FO, Fauziah SH. 2018. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment. Environ Technol. 39(4):527–535. doi:10.1080/09593330.2017.1305455.
  • Bamforth SM, Singleton I. 2005. Bioremediation of PAHs: current knowledge and future directions. J Chem Technol Biotechnol. 80(7):723–736. doi:10.1002/jctb.1276.
  • Banat I, Makkar RS, Cameotra S. 2000. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 53(5):495–508. doi:10.1007/s002530051648.
  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E. 1999. Enhancement of solubilization and biodegradationof polyaromatic hydrocarbons by the bioemulsifier Alasan. Appl Environ Microbiol. 65(6):2697–2702.
  • Bezza FA, Beukes M, Chirwa E. 2015. Application of bio-surfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochem. 50(11):1911–1922. doi:10.1016/j.procbio.2015.07.002.
  • Bodour AA, Drees KP, Maier RM. 2003. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl Environ Microbiol. 69(6):3280–3287. doi:10.1128/aem.69.6.3280-3287.2003.
  • Cajthaml T, Erbanova P, Kollmann A, Novotny C, Sasek V, Mougin C. 2008. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol (Praha). 53(4):289–294. doi:10.1007/s12223-008-0045-7.
  • Chen J, Huang P, Zhang K, Ding F. 2012. Isolation of bio-surfactant producers, optimization and properties of bio-surfactant produced by Acinetobacter sp. from petroleum‐contaminated soil. J Appl Microbiol. 112(4):660–671. doi:10.1111/j.1365-2672.2012.05242.x.
  • Dhote M, Kumar A, Jajoo A, Juwarkar A. 2017. Assessment of hydrocarbon degradation potentials in a plant–microbe interaction system with oil sludge contamination: a sustainable solution. Int J Phytoremediation. 19(12):1085–1092. doi:10.1080/15226514.2017.1328388.
  • Dong DM, Liu XX, Hua XY, Guo ZY, Li LF, Zhang LW, Xie YJ. 2016. Sedimentary record of polycyclic aromatic hydrocarbons in Songhua River. China Environ Earth Sci. 75:508–515.
  • D'orazio V, Ghanem A, Senesi N. 2013. Phytoremediation of pyrene contaminated soils by different plant species. Clean Soil Air Water. 41(4):377–382. doi:10.1002/clen.201100653.
  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA. 2015. Isolation and characterization of bio-surfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci. 22(4):466–475. doi:10.1016/j.sjbs.2014.11.018.
  • Faria AF, Teodoro-Martinez DS, Barbosa G. 2011. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 46:1951–1957. doi:10.1016/j.procbio.2011.07.001.
  • Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM. 2012. Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol. 113(4):779–789. doi:10.1111/j.1365-2672.2012.05386.x.
  • Ferhat S, Sami M, Badis A, Eddouaouda K, Alouaoui R, Boucherit A, Mhiri N, Moulai-Mostefa N, Sayadi S. 2011. Screening and preliminary characterization of bio-surfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int Biodeter Biodegr. 65:1182–1188. doi:10.1016/j.ibiod.2011.07.013.
  • Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK. 2008. Production and properties of a bio-surfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interface Sci. 324(1–2):172–176. doi:10.1016/j.jcis.2008.05.001.
  • Gomes MB, Gonzales-Limache EE, Sousa STP, et al. 2016. Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeter Biodegr. XXX:1–12. doi:10.1016/j.ibiod.2016.08.014
  • IARC (International Agency for Research on Cancer). 2010. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monogr Eval Carcinog Risks Hum. 92:765–771.
  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S. 2013. Production and partial characterization of bio-surfactant produced by crude oil-degrading bacteria. Int Biodeter Biodegrad. 81:28–34. doi:10.1016/j.ibiod.2012.11.012.
  • Jo YT, Park JH. 2011. Remediation of naphthalene and phenanthrene contaminated soil by extraction using superheated water. Proceedings of 2011 4th International Conference on Environmental and Computer Science. ICECS, Singapore.
  • Joshi S, Bharucha C, Desai A. 2008. Production of bio-surfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol. 99(11):4603–4608. doi:10.1016/j.biortech.2007.07.030.
  • Kanga SA, Bonner JS, Page CA, Mills MA, Autenrieth RL. 1997. Solubilization of naphthalene and methyl substituted naphthalene's from crude oil using bio-surfactants. Environ Sci Technol. 31(2):556–561. doi:10.1021/es9604370.
  • Khan A, Ali H, Tanveer S, Alia S, Anees M, Sultan A, Iqbal M, Yousaf S. 2017. Role of nutrients in bacterial bio-surfactant production and effect of bio-surfactant production on petroleum hydrocarbon biodegradation. Ecol Eng. 104:158–164. doi:10.1016/j.ecoleng.2017.04.023.
  • Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. 2012. Production and stability studies of the bio-surfactant isolated from marine Nocardiopsis sp. B4. Desalination. 3:198–204. doi:10.1016/j.desal.2011.10.002.
  • Kim KH, Jahan SA, Kabir E, Brown R. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 60:71–80. doi:10.1016/j.envint.2013.07.019.
  • Kotoky R, Das S, Singha LP, Pandey P, Singha KM. 2017. Biodegradation of Benzo(a)pyrene by biofilm-forming and plant growth promoting Acinetobacter sp. strain PDB4. Environ Technol Innovat. 8:256–268. doi:10.1016/j.eti.2017.07.007.
  • Kotoky R, Rajkumari J, Pandey P. 2018. The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manage. 217:858–870. doi:10.1016/j.jenvman.2018.04.022.
  • Li J, Deng M, Wang Y, Chen W. 2016. Production and characteristics of bio-surfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. Int Biodeter Biodegrad. 112:72–79. doi:10.1016/j.ibiod.2016.05.002.
  • Maki T, Masahito S, Ariani H, Shigeaki H. 2010. The potential of Cycloclasticus and Altererythrobacter strains for use in bioremediation of petroleum-aromatic-contaminated tropical marine environments. J Biosci Bioeng. 110:48–52.
  • Makkar R, Cameotra S. 2002. An update on the unconventional substrates for the bio-surfactant production and their (new) application. Appl Microbiol Biotechnol. 58:428–434. doi:10.1007/s00253-001-0924-1.
  • Marston CP, Pereira C, Ferguson J, Fischer K, Hedstrom O, Dashwood WM, Baird WM. 2001. Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis. 22(7):1077–1086. doi:10.1093/carcin/22.7.1077
  • Muckian LM, Grant RJ, Clipson NJW, Doyle EM. 2009. Bacterial community dynamics during bioremediation of phenanthrene and fluoranthene amended the soil. Int Biodeterior Biodegrad. 63(1):52–56. doi:10.1016/j.ibiod.2008.04.005.
  • Nayak AK, Panda SS, Basu A, Dhal NK. 2018. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediation. 20(7):682–691. doi:10.1080/15226514.2017.1413332.
  • Nayak AS, Vijaykumar MH, Karegoudar TB. 2009. Characterization of bio-surfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeter Biodegr. 63(1):73–79. doi:10.1016/j.ibiod.2008.07.003.
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of bio-surfactants: recent advances. IJMS. 12(1):633–654. doi:10.3390/ijms12010633.
  • Pan F, Meng Q, Luo S, Shen J, Chen B, Khan KY, Japenga J, Ma X, Yang X, Feng Y. 2017. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int J Phytoremediation. 19(3):281–289. doi:10.1080/15226514.2016.1225280.
  • Pant R, Pandey P, Kotoky R. 2016. Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol Eng. 94:50–56. doi:10.1016/j.ecoleng.2016.05.079.
  • Peng JJ, Wang N, Li HJ, Cai C. 2011. Microbial degradation mechanisms of soil high molecular weight PAHs and affecting factors: a review. J Ecol. 30:2621–2627.
  • Pereira JFB, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR. 2013. Optimization and characterization of bio-surfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel. 111:259–268. doi:10.1016/j.fuel.2013.04.040.
  • Quinn W, Fanb F, Zhua Y, Huang X, Ding A, Liuc X, Doua J. 2018. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic Hydrocarbon-contaminated soil. Braz J Microbiol. 49:258–268. doi:10.1016/j.bjm.2017.04.014.
  • Raymond OA, Harrison IA, Rene S. 2019. Identification and characterization of PAH-degrading endophytes isolated from plants growing around a sludge dam. Int J Phytoremediation. 21(7):672–682. doi:10.1080/15226514.2018.1556585.
  • Ron EZ, Rosenberg E. 2001. Natural roles of bio-surfactants. Environ Microbiol. 3(4):229–236. doi:10.1046/j.1462-2920.2001.00190.x.
  • Saikia R, Deka S, Deka M, Banat IM. 2012. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann Microbiol. 62(2):753–763. doi:10.1007/s13213-011-0315-5.
  • Sakthipriya N, Doble M, Sangwai JS. 2015. The action of bio-surfactant producing thermophilic Bacillus subtilis on waxy crude oil and long-chain paraffin. Int Biodeterior. Biodegrad. 105:168–177. doi:10.1016/j.ibiod.2015.09.004.
  • Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shete AM, Chopade BA. 2010. Molecular genetics of biosurfactant synthesis in microorganisms. Adv Exp Med Biol. 672:14–41. doi:10.1007/978-1-4419-5979-9_2.
  • Schneider IL, Teixeira EC, Agudelo-Castaneda DM, Silva e Silva G, Balzaretti N, Braga MF, Oliveira LF. 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci Total Environ. 541:1151–1160. doi:10.1016/j.scitotenv.2015.09.142.
  • Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A. 2011. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B Biointerf. 82(2):477–482. doi:10.1016/j.colsurfb.2010.10.005.
  • Thavasi R, Sharma S, Jayalakshmi S. 2011. Evaluation of screening methods for the isolation of bio-surfactant producing marine bacteria. J Pet Environ Biotechnol. S1:001:1–6. doi:10.4172/2157-7463.S1-001
  • Thomas F, Lorgeoux C, Faure P, Billet D, Cebron A. 2016. Isolation and substrate screening of polycyclic aromatic hydrocarbon-degrading bacteria from the soil with long history of contamination. Int Biodeterior Biodegrad. 107:1–9. doi:10.1016/j.ibiod.2015.11.004.
  • Wong J, Zhao Z, Zheng G. 2010. Bio-surfactants from Acinetobacter calcoaceticus BU03 enhance the bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Volume 15, Article 5.
  • Wu K, Dumat C, Li H, Xia H, Li Z, Wu J. 2019. Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene. Int J Phytoremediation. 21(7):683. doi:10.1080/15226514.2018.1556586.
  • Zheng C, He J, Wang Y, Wang M, Huang Z. 2011. Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus palidus strains. Bioresour Technol. 102(19):9155–9161. doi:10.1016/j.biortech.2011.06.074.
  • Zhu X, Ni X, Waigi MG, Liu J, Sun K, Gao Y. 2016. Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. IJERPH. 13(8):805. doi:10.3390/ijerph13080805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.