300
Views
12
CrossRef citations to date
0
Altmetric
Articles

Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven

, &

References

  • Abu-Ziada ME. 2007. Ecological studies on the aquatic macrophytes II: Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Pakistan J Biol Sci. 10(12):2025–2038. doi:10.3923/pjbs.2007.2025.2038.
  • Allen SE. 1989. Chemical analysis of ecological materials. London: Blackwell Scientific Publications.
  • Amer WM, Hamdy RS, Hamed AB. 2016. Macro- and micro- morphological variations of Ludwigia stolonifera (Guill. & Perr.) P.H. Raven in Egypt and its taxonomic assessment. Egypt. J. Bot., 6th International conference 11–12 May, Menoufia University. 317–354.
  • Antunes WM, Luna AS, Henriques CA, Da Costa A. 2003. An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electronic J Biotech. 6(3):174–184.
  • Batool R, Hameed M, Ashraf M, Fatima S, Nawaz T, Ahmad M. 2014. Structural and functional response to metal toxicity in aquatic Cyperus alopecuroides Rottb. Limnolog. 48:46–56. doi:10.1016/j.limno.2014.06.002.
  • Bonanno G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxico Environ Safe. 97:124–130. doi:10.1016/j.ecoenv.2013.07.017.
  • Bonanno G, Borg JA, Di Martino V. 2017. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Sci Total Environ. 576:796–806. doi:10.1016/j.scitotenv.2016.10.171.
  • Bose S, Vedamati J, Rai V, Ramanathan AL. 2008. Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma. 145(1–2):136–142. doi:10.1016/j.geoderma.2008.03.009.
  • Boulos L. 2002. Flora of Egypt. Vol. III. Verbinaceae- Compositae. Cairo: Al Hadara Publishing.
  • Bragato C, Brix H, Malagoli M. 2006. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Poll. 144(3):967–975. doi:10.1016/j.envpol.2006.01.046.
  • Carluer N, Marsily G. 2004. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management. J Hydrol. 285(1–4):76–95. doi:10.1016/j.jhydrol.2003.08.008.
  • Chandrasekaran A, Ravisankar R. 2015. Spatial distribution of physico-chemical properties and function of heavy metals in soils of Yelagiri Hills, Tamilnadu by Energy Dispersive X-Ray Florescence Spectroscopy (EDXRF) with statistical approach. Spectrochimica Acta - Part A Mol Biomol Spect. 150:586–601. doi:10.1016/j.saa.2015.05.083.
  • Chiroma TM, Ebewele RO, Hymore FK. 2014. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int Ref J Eng Sci. 3(2):01–09.
  • Dummee V, Kruatrachue M, Trinachartvanit W, Tanhan P, Pokethitiyook P, Damrongphol P. 2012. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand. Ecotoxicol Environ Safe. 86:204–212. doi:10.1016/j.ecoenv.2012.09.018.
  • Eid EM, Youssef MSG, Shaltout KH. 2016. Population characteristics of giant reed (Arundo donax L.) in cultivated and naturalized habitats. Aquat Bot. 129:1–8. doi:10.1016/j.aquabot.2015.11.001.
  • Eid EM, Shaltout KH. 2016. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int J Phytoremed. 18(11):1075–1085. doi:10.1080/15226514.2016.1183578.
  • Elifantz H, Tel-Or E. 2002. Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water Air Soil Poll. 141(1/4):207–218.
  • Farahat EA, Galal TM. 2018. Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Environ Sci Pollut Res. 25(5):4214–4222. doi:10.1007/s11356-017-0808-2.
  • Farrag HF, Fawzy M. 2012. Phytoremediation potentiality of Cyperus articulatus L. Life Sci J. 9(4):4032–4040.
  • Fawzy MA, Badr NE, El-Khatib A, Abo-El-Kassem A. 2012. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 184(3):1753–1771. doi:10.1007/s10661-011-2076-9.
  • Fernández-Calviño D, Cutillas-Barreiro L, Paradelo-Núñez R, Nóvoa-Muñoz JC, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, Arias-Estévez M. 2017. Heavy metals fractionation and desorption in pine bark amended mine soils. J Environ Manage. 192:79–88. doi:10.1016/j.jenvman.2017.01.042.
  • Galal TM, Eid EM, Dakhil MA, Hassan LM. 2018. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremed. 20(5):440–447. doi:10.1080/15226514.2017.1365343.
  • Galal TM, Farahat EA. 2015. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environ Monit Assess. 178:701. doi:10.1007/s10661-015-4941-4.
  • Galal T, Shaltout K, Hassan L. 2012. The Egyptian northern lakes: habitat diversity, vegetation and economic importance. Saarbrücken: LAP LAMBERT Academic Publishing.
  • Galal TM, Shehata HS. 2014. Evaluation of the invasive macrophyte Myriophyllum spicatum L. as a bioaccumulator for heavy metals in some watercourses of Egypt. Ecol Indic. 41:209–214. doi:10.1016/j.ecolind.2014.02.004.
  • Galal TM, Shehata HS. 2016. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Int J Phytoremed. 18(12):1221–1230. doi:10.1080/15226514.2016.1193470.
  • Galal TM, Gharib FA, Ghazi SM, Mansour KH. 2017a. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremed. 19(11):992–999. doi:10.1080/15226514.2017.1303816.
  • Galal TM, Gharib FA, Ghazi SM, Mansour KH. 2017b. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environ Sci Pollut Res. 24(27):21636–21648. doi:10.1007/s11356-017-9793-8.
  • Ghazi SM, Galal TM, Husein KH. 2019. Monitoring water pollution in the Egyptian watercourses: a phytoremediation approach. London: Lap Lambert Academic Publishing. 153 pp.
  • Guittonny-Philippe A, Masotti V, Höhener P, Boudenne J, Viglione J, Laffont-Schwob I. 2014. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int. 64:1–16. doi:10.1016/j.envint.2013.11.016.
  • Ho YB. 1988. Metal levels in three intertidal macroalgae in Hong Kong waters. Aquat Bot. 29(4):367–372. doi:10.1016/0304-3770(88)90080-0.
  • Husein KH. 2018. Evaluation of some aquatic macrophytes for their capacity to remove water pollutants from the main water courses in Greater Cairo, Egypt [A Master Thesis]. Faculty of Science, Helwan University, Cairo. 172 pp.
  • Imran M, Rehim A, Sarwar N, Hussain S. 2016. Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. J Plant Nutr Soil Sci. 179(1):60–66. doi:10.1002/jpln.201500441.
  • Kabata-Pendias A, Pendias H. 1992. Trace elements in soils and plants. 2nd ed. Boca Raton (FL): CRC Press.
  • Kassaye YA, Skipperud L, Einset J, Salbu B. 2016. Aquatic macrophytes in Ethiopian Rift Valley lakes; their trace elements concentration and use as pollution indicators. Aquat Bot. 134:18–25. doi:10.1016/j.aquabot.2016.06.004.
  • Kavak S. 2014. Ludwigia stolonifera. In: IUCN 2014. IUCN Red List of Threatened Species. Version 2014.1.
  • Khalifa NS, Amer WM, Hamed AB. 2017. Bridging pheno- plasticity with genetic profile of the hydrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven: with reference to its expansion to new habitats. Caryologia: Int J Cytol Cytosystem Cytogenet 70(1):1–12. doi:10.1080/00087114.2017.1352399.
  • Kropfelova L, Vymazal J, Svehla J, Stichova J. 2009. Removals of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech-Republic. Environ Poll. 157:1186–1194. doi:10.1016/j.envpol.2008.12.003.
  • Kumwimba MN, Zhu B, Suanon F, Muyembe DK, Dzakpasu M. 2017. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: implications for phytoremediation and restoration. Sci Total Environ. 581–582:773–781. doi:10.1016/j.scitotenv.2017.01.007.
  • Kumwimba MN, Dzakpasu M, Zhu B, Wang T, Ilunga I, Muyembe DK. 2016. Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River. Water Environ. J. 31(1):72–79.
  • Kunihiko A. 2006. Importance of aquatic macrophytes in controlling water quality of shallow lakes, Proceedings of the 11 th World Lakes Conference– Proceedings. 143–147.
  • Lu RK. 2000. Methods of inorganic pollutants analysis. In: Soil and agro-chemical analysis methods. Beijing: Agricultural Science and Technology Press.
  • Lytle JS, Lytle TF. 2001. Use of plants for toxicity assessment of estuarine ecosystems. Environ Toxicol Chem. 20(1):68–83. doi:10.1897/1551-5028(2001)020<0068:UOPFTA>2.0.CO;2.
  • Mahmoud KE, Ghoneim MA. 2016. Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth. 7(2):703–711. doi:10.5194/se-7-703-2016.
  • Marchand L, Mench M, Jacob DL, Otte ML. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Poll. 158(12):3447–3461. doi:10.1016/j.envpol.2010.08.018.
  • Mganga N, Manoko MLK, Rulangaranga ZK. 2011. Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanzan J Sci. 37:109–119.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8(3):199–216. doi:10.1007/s10311-010-0297-8.
  • Ng YS, Chan DJC. 2017. Wastewater phytoremediation by Salvinia molesta. J Water Process Eng. 15:107–115. doi:10.1016/j.jwpe.2016.08.006.
  • Opeolu BO, Bamgbose O, Arowolo TA, Adetunji MT. 2010. Utilization of biomaterials as adsorbents for heavy metals’ removal from aqueous matrices. Sci Res Ess. 5(14):1780–1787.
  • Peng MW, Wang DYL, Jiang Y. 2008. An institution-based view of international business strategy: a focus on emerging economies. J Int Bus Stud. 39(5):920–936. doi:10.1057/palgrave.jibs.8400377.
  • Pradhan NK, Ghosal S, Chakraborty I. 2013. Jussiaea repens L. is a nontoxic antigonadal herb- a dose dependent study on male rates. Int J Pharm Bio Sci. 4(2):131–143.
  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 318:587–599. doi:10.1016/j.jhazmat.2016.07.053.
  • Roqaiya M, Begum W, Majeedi SF, Saiyed A. 2015. A review on Herbs with Uterotonic Property. J Phytopharmacol. 4(3):190–196.
  • Roy M, McDonald LM. 2013. Metal uptake in plants and health risk assessments metal-contaminated smelter soils. Land Degrad Develop. 26(8):785–792. doi:10.1002/ldr.2237.
  • Saleh HM, Aglan RF, Mahmoud HH. 2019. Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chem Ecol. 35(2):164–178. doi:10.1080/02757540.2018.1546296.
  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Shaltout KH, Galal TM, El-Komy TM. 2010. Evaluation of the nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecol Medit. 36(1):77–87. doi:10.1155/2009/862565.
  • Shaltout KH, El-Komi TM, Eid ME. 2012. Seasonal variation in the phytomass, chemical composition and nutritional value of Azolla filiculoides Lam. along the water courses in Nile Delta. Feddes Repert. 123(1):37–49. doi:10.1002/fedr.201200001.
  • Shaltout KH, Galal TM, El-Komy TM. 2013. Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. in the water courses of Nile Delta, Egypt. Rend Fis Acc Lincei. 25(2):167–179. doi:10.1007/s12210-013-0269-6.
  • Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, Sun X, Awasthi MK, Wang Q, Zhang Z. 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotox Environ Safe. 139:254–262. doi:10.1016/j.ecoenv.2017.01.044.
  • Soliman AT, Hamdy RS, Hamed AB. 2018. Ludwigia stolonifera (Guill. & Perr.) P.H. Raven, insight into its phenotypic plasticity, habitat diversity and associated species. Egypt J Bot. 58(3):1–21. doi:10.21608/ejbo.2018.5268.1217.
  • SPSS. 2012. IBM SPSS statistics version 21.0. Copyright of IBM and other(s) 1989-2012, USA.
  • Vardanyan LG, Ingole B. 2006. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int. 32(2):208–218. doi:10.1016/j.envint.2005.08.013.
  • Weis JS, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 30(5):685–700. doi:10.1016/j.envint.2003.11.002.
  • Wojciechowska E, Waara S. 2011. Distribution and removal efficiency of heavy metals in two constructed wetlands treating landfill leachate. Water Sci. Technol. 64(8):1597–1606.
  • Yan P, Xia J-S, Chen Y-P, Liu Z-P, Guo J-S, Shen Y, Zhang C-C, Wang J. 2017. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresour Technol. 232:354–363. doi:10.1016/j.biortech.2017.02.067.
  • Zhang JT, Xi Y, Li J. 2006. The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Commun Ecol. 7(2):155–163. doi:10.1556/ComEc.7.2006.2.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.