577
Views
37
CrossRef citations to date
0
Altmetric
Articles

Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids

, , , , , , , & show all

References

  • Agnello AC, Huguenot D, Hullebusch EDV, Esposito G. 2014. Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Env Sci Tec. 44(22):2531–2576. doi:10.1080/10643389.2013.829764.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution. Biorecovery. 1:81–126.
  • Chaturvedi N, Dhal NK, Patra HK. 2015. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: a comparative study. Int J Min Reclam Environ. 29(1):33–46. doi:10.1080/17480930.2014.955328.
  • Chen H, Dou J, Xu H. 2018. The effect of low molecular weight organic acids (LMWOAs) on treatment of chromium-contaminated soils by compost-phytoremediation: Kinetics of the chromium release and fractionation. J Environ Sci. 70(8):48–56.
  • Deng L, Li Z, Wang J, Liu HY, Li N, Wu LH, Hu PJ, Luo YM, Christie P. 2016. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytorem. 18(2):134–140. doi:10.1080/15226514.2015.1058328.
  • do Nascimento CW, Amarasiriwardena D, Xing B. 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut. 140(1):114–123. doi:10.1016/j.envpol.2005.06.017.
  • Evangelou MWH, Ebel M, Schaeffer A. 2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere. 63(6):996–1004. doi:10.1016/j.chemosphere.2005.08.042.
  • Evangelou MWH, Ebel M, Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68(6):989–1003. doi:10.1016/j.chemosphere.2007.01.062.
  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf. 145(1):90–102. doi:10.1016/j.ecoenv.2017.07.016.
  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir NSI, Ahmad I. 2019. Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. Int J Phytorem. 21(8):760–767. doi:10.1080/15226514.2018.1556595.
  • Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah R, Azam A, Ashraf R, Ashraf W. 2018. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower: physiological and biochemical response. Environ Sci Pollut Res. 25(25):25390–25400. doi:10.1007/s11356-018-2508-y.
  • Garbisu C, Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77(3):229–236.
  • Han F, Shan XQ, Zhang SZ, Wen B, Gary O. 2006. Enhanced cadmium accumulation in maize roots-the impact of organic acids. Plant Soil. 289(1–2):355–368. doi:10.1007/s11104-006-9145-9.
  • Ji PH, Sun TH, Song YF, Ackland ML, Liu Y. 2011. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut. 159(3):762–768. doi:10.1016/j.envpol.2010.11.029.
  • Krzciuk K, Gałuszka A. 2015. Prospecting for hyperaccumulators of trace elements: a review. Crit Rev Biotechnol. 35(4):1–11.
  • Kubota H, Takenaka C. 2003. Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediation. 5(3):197–201. doi:10.1080/713779219.
  • Li JT, Baker AJM, Ye ZH, Wang HB, Shu WS. 2012. Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol. 42(20):2113–2152. doi:10.1080/10643389.2011.574105.
  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA. 2012. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J Phytorem. 14(2):162–173. doi:10.1080/15226514.2011.587479.
  • Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJM, Tang YT, Yang XE, Shu WS. 2018. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol. 52(21):11980–11994. doi:10.1021/acs.est.8b01060.
  • Li HY, Liu YG, Zeng GM, Zhou L, Wang X, Wang YQ, Wang CL, Hu XJ, Xu WH. 2014. Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci. 26(12):2508–2516. doi:10.1016/j.jes.2014.05.031.
  • Li Z, Wu LH, Hu PJ, Luo YM, Zhang H, Christie P. 2014. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environ Pollut. 189:176–183. doi:10.1016/j.envpol.2014.02.034.
  • Liu J, Duan CQ, Zhang XH, Zhu YN, Lu XY. 2011. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater. 188(1–3):85–91. doi:10.1016/j.jhazmat.2011.01.066.
  • Liu D, Islam E, Li TQ, Yang XE, Jin XF, Mahmood Q. 2008. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater. 153(1–2):114–122. doi:10.1016/j.jhazmat.2007.08.026.
  • Liu J, Mo LY, Zhang XH, Yao SY, Wang YX. 2018. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn. Int J Phytorem. 20(11):1106–1112. doi:10.1080/15226514.2017.1365341.
  • Liu J, Shang WW, Zhang XH, Zhu YN, Yu K. 2014. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. J Hazard Mater. 267(1):136–141. doi:10.1016/j.jhazmat.2013.12.051.
  • Liu W, Shu W, Lan C. 2004. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull. 49(1):29–32. doi:10.1007/BF02901739.
  • Lu H, Li Z, Wu J, Shen Y, Li Y, Zou B, Tang Y, Zhuang P. 2017. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Sci Rep. 7:40583. doi:10.1038/srep40583.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li RH, Zhang ZQ. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf. 126:111–121. doi:10.1016/j.ecoenv.2015.12.023.
  • Mani D, Kumar C, Patel NK. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. Int J Phytorem. 17(3):256–263. doi:10.1080/15226514.2014.883497.
  • Neugschwandtner RW, Tlustoš P, Komárek M, Száková J, Jakoubková L. 2012. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum Aestivum: performance and metal mobilization over a three year period. Int J Phytorem. 14(8):754–771. doi:10.1080/15226514.2011.619231.
  • Nie FH. 2006. Cd hyperaccumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics. Ecol Environ. 15(2):303–306. (in Chinese, with an English abstract).
  • Saifullah Meers E, Qadir M, Caritat P, Tack FMG, Laing GD, Zia MH. 2009. EDTA-assisted Pb phytoextraction. Chemosphere. 74(10):1279–1291.
  • Salt DE, Prince RC, Pickering IJ, Raskin I. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109(4):1427–1433. doi:10.1104/pp.109.4.1427.
  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam T. 241:73–147.
  • Sun RL, Zhou QX, Jin CX. 2006. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil. 285(1–2):125–134. doi:10.1007/s11104-006-0064-6.
  • Tai YP, Yang YF, Li ZA, Yang Y, Wang JX, Zhuang P, Zou B. 2017. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. Environ Technol. 39(16):2138–2150. doi:10.1080/09593330.2017.1351493.
  • Uena D, Zhao FJ, Shen RF, Ma JF. 2004. Cadmium and zinc accumulation by the hyperaccumulator Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci Plant Nutr. 50(4):511–515. doi:10.1080/00380768.2004.10408507.
  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 362(1–2):319–334. doi:10.1007/s11104-012-1287-3.
  • Vázquez MD, Barceló J, Poschenrieder C, Mádico J, Hatton P, Baker AJM, Cope GH. 1992. Localization of zinc and cadmium in Thlaspi caerulescens (brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol. 140(3):350–355. doi:10.1016/S0176-1617(11)81091-6.
  • Wang S, Mulligan CN. 2009. Effect of natural organic matter on arsenic mobilization from mine tailings. J Hazard Mater. 168(2–3):721–726. doi:10.1016/j.jhazmat.2009.02.088.
  • Wang S, Mulligan CN. 2013. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings. Environ Geochem Health. 35(1):111–118. doi:10.1007/s10653-012-9461-3.
  • Wang DQ, Zhang XH, Liu J, Zhu YN, Zhang H, Zhang AL, Jin XD. 2012. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz. Int J Phytorem. 71:36–40.
  • Wei SH, Zhou QX. 2006. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res Int. 13(3):151–155.
  • Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma QY. 2005. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Sci Bull. 50(1):33–38. doi:10.1360/982004-292.
  • Wu LH, Li Z, Akahane I, Liu L, Han CL, Makino T, Luo YM, Christie P. 2012. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytorem. 14(10):1024–1038. doi:10.1080/15226514.2011.649436.
  • Wu LH, Luo YM, Christie P, Wong MH. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50(6):819–822.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259(1/2):181–189. doi:10.1023/B:PLSO.0000020956.24027.f2.
  • Yao SY, Liu J, Wang YX, Zhu YF, Feng S. 2017. Cd hyperaccumulation and accumulative kinetics of Celosia argentea L. for phytoremediation of Cd-contaminated soil. J Agro-Environ Sci. 36(8):1470–1476. (in Chinese, with an English abstract).
  • Yu XZ, Wang DQ, Zhang XH. 2014. Chelator-induced phytoextraction of zinc and copper by rice seedlings. Ecotoxicology. 23(4):749–756. doi:10.1007/s10646-014-1188-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.