408
Views
17
CrossRef citations to date
0
Altmetric
Articles

Gallic acid (GA) alleviating copper (Cu) toxicity in maize (Zea mays L.) seedlings

&

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-Ur-Rehman M, Irshad MK, Bharwana SA. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res. 22(11):8148–8162. doi:10.1007/s356-015-4496-5.
  • Aebi H. 1983. Catalase. In: Bergmeyer H, editor. Methods of enzymatic analysis. Weinheim: Verlag Chemie. p. 273–286.
  • Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2(4):875. doi:10.1038/nprot.2007.102.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Experimantal Bot. 59(2):206–216. doi:10.1016/j.envexpbot.2005.12.006.
  • Badhani B, Sharma N, Kakkar R. 2015. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5(35):27540–27557. doi:10.1039/C5RA01911G.
  • Barrs H, Weatherley P. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Bio Sci. 15(3):413–428. doi:10.1071/BI9620413.
  • Bates L, Waldren R, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–198. doi:10.1007/BF00018060.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Chatterjee J, Chatterjee C. 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut. 109(1):69–74. doi:10.1016/s0269-7491(99)00238-9.
  • Eslami AC, Pasanphan W, Wagner BA, Buettner GR. 2010. Free radicals produced by the oxidation of gallic acid: an electron paramagnetic resonance study. Chem Cent J. 4:1–4. doi:10.1186/1752-153X-4-15.
  • Heath R, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hossain MA, Piyatida P, da Silva JAT, Fujita M. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012:1–37. doi:10.1155/2012/872875.
  • Irigoyen JJ, Emerich DW, Sánchez-Díaz M. 1992. Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution. Physiol Plant. 84(1):67–72. doi:10.1111/j.1399-3054.1992.tb08766.x.
  • Kaplan M. 1999. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey. J Plant Nutr. 22(2):237–244. doi:10.1080/01904169909365622.
  • Ku H-M, Tan C-W, Su Y-S, Chiu C-Y, Chen C-T, Jan F-J. 2012. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana. Biol Plant. 56(2):337–343. doi:10.1007/s10535-012-0095-1.
  • Lichtenthaler HK. 1987. No Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Liu J, Wei Z, Li J. 2014. Effects of copper on leaf membrane structure and root activity of maize seedling. Bot Stud. 55(1):1–6. doi:10.1186/s40529-014-0047-5.
  • Menzi P, Nkomo M, Keyster M, Klein A. 2018. Gallic acid regulates physiological and biochemical responses of soybean plants under salt stress. South African J Bot. 115:323. doi:10.1016/j.sajb.2018.02.170.
  • Metwali EMR, Gowayed SMH, Al-Maghrabi OA, Mosleh YY. 2013. Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Appl Sci J. 21:301–314. doi:10.5829/idosi.wasj.2013.21.3.2835.
  • Mocquot B, Vangronsveld J, Clijsters H, Mench M. 1996. Copper toxicity in young maize (Zea mays L.) plants : effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil. 182(2):287–300. doi:10.1007/BF00029060.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Pastori GM, Trippi VS. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33:957–961. doi:10.1093/oxfordjournals.pcp.a078347.
  • Pätsikkä E, Kairavuo M, Šeršen F, Aro E-M, Tyystjärvi E. 2002. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 129(3):1359. LP – 1367. doi:10.1104/pp.004788.
  • Pirker KF, Baratto MC, Basosi R, Goodman BA. 2012. Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid. J Inorg Biochem. 112:10–16. doi:10.1016/j.jinorgbio.2011.12.010.
  • Pourakbar L, Khayami M, Khara J, Farbodnia T. 2007. Copper induce change in antioxidative system in maize (Zea mays L.). Pakistan J of Biological Sciences. 10:3662–3667. doi:10.3923/pjbs.2007.3662.3667.
  • Reuther W. 1957. Copper and soil fertility. U.S. Dep. Agric. Yearbook for 1957, Soils, p. 128–135.
  • Rucińska-Sobkowiak R. 2016. Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant. 38(11):257. doi:10.1007/s11738-016-2277-5.
  • Rudolphi-Skórska E, Sieprawska A. 2016. Adaptation of wheat cells to short-term ozone stress: the impact of α-tocopherol and gallic acid on natural and model membranes. Acta Physiol Plant. 38(4):85. doi:10.1007/s11738-016-2102-1.
  • Singh A, Gupta R, Pandey R. 2017. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiol Mol Biol Plants. 23(2):301–309. doi:10.1007/s12298-017-0430-2.
  • Smirnof N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125:27–58.
  • Sonmez S, Kaplan M, Sonmez NK, Kaya H, Uz I. 2006. High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Sci Agric (Piracicaba, Braz). 63(3):213–218. doi:10.1590/S0103-90162006000300001.
  • Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. 2016. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci. 41(6):525–530.
  • Tanyolaç D, Ekmekçi Y, Ünalan Ş. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere. 67(1):89–98. doi:10.1016/j.chemosphere.2006.09.052.
  • Thompson JE, Legge RL, Barber RF. 1987. The role of free radicals in senescence and wounding. New Phytol. 105(3):317–344. doi:10.1111/j.1469-8137.1987.tb00871.x.
  • Urbanek H, Kuzniak-Gebarowska E, Herka K. 1991. Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant. 13:43–50.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Sci. 151(1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Volf I, Stîngu A, Popa VI. 2012. New natural chelating agents with modulator effects on copper phytoextraction. Environ Eng Manag J. 11:487–491. doi:10.30638/eemj.2012.061.
  • Weidner S, Chrzanowski S, Karamać M, Król A, Badowiec A, Mostek A, Amarowicz R. 2014. Analysis of phenolic compounds and antioxidant abilities of extracts from germinating Vitis californica seeds submitted to cold stress conditions and recovery after the stress. IJMS. 15(9):16211–16225. doi:10.3390/ijms150916211.
  • Wojcieszek J, Ruzik L. 2016. Enzymatic extraction of copper complexes with phenolic compounds from Açaí (Euterpe oleracea Mart.) and bilberry (Vaccinium myrtillus L.) fruits. Food Anal Methods. 9(7):2105–2114. doi:10.1007/s12161-015-0395-0.
  • Wyszkowska J, Kucharski J, Kucharski M, Borowik A. 2013. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J Elem. 18:769–796. doi:10.5601/jelem.2013.18.4.455.
  • Xu Q, Qiu H, Chu W, Fu Y, Cai S, Min H, Sha S. 2013. Copper ultrastructural localization, subcellular distribution, and phytotoxicity in Hydrilla verticillata (L.f.) Royle. Environ Sci Pollut Res. 20(12):8672–8679. doi:10.1007/s11356-013-1828-1
  • Yetişsin F. 2015. Bakır stresine maruz bırakılan hassas ve dayanıklı mısır çeşitlerinde glutatyon, hidrojen peroksit ve salsilik asit uygulamalarının fotosentetik verim üzerine etkilerinin araştırılması. Trabzon: Karadeniz Teknik Üniversitesi.
  • Yruela I. 2005. Copper in plants. Braz J Plant Physiol. 17:145–156. doi:10.1590/S1677-04202005000100012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.