402
Views
19
CrossRef citations to date
0
Altmetric
Articles

Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species

ORCID Icon, , , , , & ORCID Icon show all

References

  • Abbas MHH, Abdelhafez AA. 2013. Role of EDTA in arsenic mobilization and its uptake by maize grown on an as-polluted soil. Chemosphere. 90(2):588–594. doi:10.1016/j.chemosphere.2012.08.042.
  • Alaboudi KA, Ahmed B, Brodie G. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agric Sc. 63(1):123–127. doi:10.1016/j.aoas.2018.05.007.
  • Anwer S, Ashraf MY, Hussain M, Ashraf M, Jamil A. 2012. Citric acidmediated phytoextraction of cadmium by maize (Zea mays L.). Pak J Bot. 44(6):1831–1836.
  • Atefeh D, Anoushirvan S, Pedram A, Delshad M, Mohammad M, Khoshnevis M. 2015. Cadmium and lead effects on chlorophyll fluorescence, chlorophyll pigments and proline of Robinia pseudoacacia. J for Res. 26(2):323–329. doi:10.1007/s11676-015-0045-9.
  • Bilal Shakoor M, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Aslam Bharwana S, Hasan Abbasi G. 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf. 109:38–47. doi:10.1016/j.ecoenv.2014.07.033.
  • Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D. 2004. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Ap and Env Microb. 70(10):6147–6156. doi:10.1128/AEM.70.10.6147-6156.2004.
  • Chen L, Long X, Zhang Z, Zheng X, Hengel Z, Liu Z. 2011. Cadmium accumulation and translocation in two Jerusalem Artichoke (Helianthus tuberosus L.). Cult Pedosp. 21(5):573–580.
  • Croes S, Weyens N, Colpaert J, Vangronsveld J. 2015. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Environ Microbiol. 17(7):2379–2392. doi:10.1111/1462-2920.12701.
  • Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: a review. Environ Pollut. 98(1):29–36. doi:10.1016/S0269-7491(97)00110-3.
  • Demoling F, Figueroa D, Bååth E. 2007. Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem. 39(10):2485–2495. doi:10.1016/j.soilbio.2007.05.002.
  • Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Environ Qual. 26(3):776–781. doi:10.2134/jeq1997.00472425002600030026x.
  • Ekmekçi Y, Tanyolaç D, Ayhan B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol Plant. 31(2):319–330. doi:10.1007/s11738-008-0238-3.
  • Fahr M, Laplaze L, Mzibri ME, Doumas P, Bendaou N, Hocher V, Bogusz D, Smouni A. 2015. Assessment of lead tolerance and accumulation in metallicolous and non-metallicolous populations of Hirschfeldia incana. Environ Exp Bot. 109:186–192. doi:10.1016/j.envexpbot.2014.07.010.
  • Forte J, Mutiti S. 2017. Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water Air Soil Pollut. 228(2):1–11. doi:10.1007/s11270-017-3249-0.
  • Gadd, GM. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma. 122(2-4):109–119. doi:10.1016/j.geoderma.2004.01.002.
  • Ghelich S, Zarinkamar F, Mohammad Soltani B, Niknam V. 2014. Effect of lead treatment on medicarpin accumulation and on the gene expression of key enzymes involved in medicarpin biosynthesis in Medicago sativa L. Environ Sci Pollut Res. 21(24):14091–14098. doi:10.1007/s11356-014-3335-4.
  • Greipsson S. 2011. Phytoremediation. Nat Educ Knowl. 3(10):7–8.
  • Gupta S, Nayek S, Saha RN, Satpati S. 2008. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol. 55(4):731–739. doi:10.1007/s00254-007-1025-y.
  • Hakeem KR, Alharby HF, Rehman R. 2019. Antioxidative defense mechanism against lead-induced phytotoxicity in Fagopyrum kashmirianum. Chemosphere. 216:595–604. doi:10.1016/j.chemosphere.2018.10.131.
  • Holm-Hansen O, Gerloff GC, Skoog F. 1954. Cobalt as an essential element for blue green algae. Physiol Plant. 7:665–675. doi:10.1111/j.1399-3054.1954.tb07727.x.
  • Inoue H, Fukuoka D, Tatai Y, Kamachi H, Hayatsu M, Ono M, Suzuki S. 2013. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J Plant Res. 126(1):51–61. doi:10.1007/s10265-012-0494-6.
  • Khan S, Hesham AE, Qiao M, Rehman S, He J. 2010. Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res. 17(2):288–296. doi:10.1007/s11356-009-0134-4.
  • Kiran BR, Prasad MNV, Sateesh S. 2017. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban greater Hyderabad: remarks on seed oil. Environ Sci Pollut. 24:19955–19964.
  • Lee KK, Cho HS, Moon YC, Ban SJ, Kim JY. 2013. Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE J Civ Eng. 17(1):44–50. doi:10.1007/s12205-013-1633-x.
  • Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Cur Prot in Food Analytic Chem. 1(1):F4.3.1–F4.3.8. doi:10.1002/0471142913.faf0403s01.
  • Malar S, Manikandan R, Favas PJC, Vikram Sahi S, Venkatachalam P. 2014. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf. 108:249–257. doi:10.1016/j.ecoenv.2014.05.018.
  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S. 2009. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food d safety. Environ Sci Pollut Res Int. 16(7):876–900. doi:10.1007/s11356-009-0252-z.
  • Merini LJ, Cuadrado V. Giulietti AM, 2011. Experimental systems inagrochemicals-contaminated soils phytoremediation research. In: Golubev, IA, editor. Handbook of Phytoremediation. New York (NY): Nova Sc Pub Inc.; p. 667–690.
  • Michelland RJ, Dejean S, Combes S, Fortun-Lamothe L, Cauquil L. 2009. StatFingerprints: a friendly graphical interface program for processing and analysis of microbial fingerprint profiles. Mol Ecol Resour. 9(5):1359–1363. doi:10.1111/j.1755-0998.2009.02609.x.
  • Montalban B, Thijs S, Lobo MC, Weyens N, Ameloot M, Vangronsveld J, Perez-Sanz A. 2017. Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int J Mol Sci. 18:10–2026. doi:10.3390/ijms18102026.
  • Neher BD, Azcarate SM, Camiña JM, Savio M. 2018. Nutritional analysis of Spirulina dietary supplements: optimization procedure of ultrasound-assisted digestion for multielemental determination. Food Chem. 257:295–301. doi:10.1016/j.foodchem.2018.03.011.
  • Pál M, Horvath E, Janda T, Paldi E, Szalai G. 2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci. 169(2):239–246. doi:10.1002/jpln.200520573.
  • Pandey J, Verma RK, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremed. 21(5):405–418. doi:10.1080/15226514.2018.1540546.
  • Pandey VC, Pandey DN, Singh N. 2015. Sustainable phytoremediation based on naturally colonizing and economicalyy valuable plants. J Clean Prod. 86:37–39. doi:10.1016/j.jclepro.2014.08.030.
  • Paschalidis C, Kavvadias V, Dimitrakopoulou S, Koriki A. 2013. Effects of Cadmium and Lead on Growth, Yield, and Metal Accumulation in Cabbage. Com Soil Sc Plant Anal. 44:1–4.
  • Perelman SB, Omacini M, Tognetti PM, Batista WB. 2018. Pampean-grassland heterogeneity on the intersection of science, art, and culture. Fl Medit. 28:313–329.
  • Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M. 2009. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ Exp Bot. 66(3):507–513. doi:10.1016/j.envexpbot.2009.03.019.
  • Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH. 2003. Relationships at the aboveground–belowground interface: plants, soil biota, and soil processes. Ecol Monogr. 73(3):377–395.
  • Poverene M, Carrera A, Ureta S, Cantamutto M. 2004. Wild Helianthus species and wild-sunflower hybridization in Argentina. Helia. 27(40):133–142. doi:10.2298/HEL0440133P.
  • Ralph PJ, Burchett MD. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Env Pol. 103(1):91–101. doi:10.1016/S0269-7491(98)00121-3.
  • Ramzani PMA, Khan WD, Iqbal M, Kausar S, Ali S, Rizwan M, Virk ZA. 2016. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ Sci Pollut Res. 23(18):18585–18595. doi:10.1007/s11356-016-7038-x.
  • Ranjard L, Brothier E, Nazaret S. 2000. Sequencing bands of RISA fingerprints for the characterization and the microscale distribution of soil bacterial populations responding to mercury spiking. Appl Environ Microbiol. 66(12):5334–5339. doi:10.1128/AEM.66.12.5334-5339.2000.
  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C. 2003. Major ecological transitions in wild sunflowers facilitated by hybridization. Science. 301(5637):1211–1216. doi:10.1126/science.1086949.
  • Rivelli AR, De Maria S, Puschenreiter M, Gherbin P. 2012. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Int J Phytorem. 14(4):320–334. doi:10.1080/15226514.2011.620649.
  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J. 2006. Phytostabilization of a metal contaminated sandy soil: Part II: influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut. 144(2):533–539. doi:10.1016/j.envpol.2006.01.021.
  • Saran A, Fernández L, Minig M, Bellozas Reinhard M, Merini LJ. 2019. Repellent activity of essential oils from native plants and their blend for tribolium castaneum control in store grains. SEMIÁRIDA. 29(1):4351.
  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 60:182–194. doi:10.1016/j.soilbio.2013.01.012.
  • Seyyednejad SM, Niknejad M, Yusefi M. 2009. Study of air pollutioneffects on some physiology and morphology factors of Albizialebbeck in high temperature condition in Khuzestan. J Plant Sci. 4:122–126. doi:10.3923/jps.2009.122.126.
  • Soderberg KH, Bååth E. 1998. Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques. Soil Biol Biochem. 30:1259–1268. doi:10.1016/S0038-0717(98)00058-3.
  • Sun R, Zhou Q, Jin C. 2006. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil. 285(1–2):125–134. doi:10.1007/s11104-006-0064-6.
  • Thijs S, Langill T, Vangronsveld J. 2017. The bacterial and fungal microbiota of hyperaccumulator plants: small organisms, large influence. Adv Botanic R. 83:43–86.
  • Tong XH, Daud MK, Sun YQ, Zhu SJ. 2009. Physiological and molecular mech-anisms of glyphosate tolerance in an in vitro selected cotton mutant. Pestic Biochem Phys. 94(2–3):100–106. doi:10.1016/j.pestbp.2009.04.007.
  • Tran TA, Popova LP. 2013. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot. 37:1–13.
  • US EPA. 1992. Methods for the determination of metals in environmental samples. Method 200.8, Supplement 1 (EPA 600/R-94/111). Cincinnati, OH: Environmental Monitoring Systems Laboratory.
  • Tripathi AK, Gautam M. 2007. Biochemical parameters of plants as indicators of air pollution. Environ Biol. 28:127–132.
  • Vangronsveld J, Colpaert J, Van Tichelen K. 1996. Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut. 94(2):131–140. doi:10.1016/S0269-7491(96)00082-6.
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. 16(7):765–794. doi:10.1007/s11356-009-0213-6.
  • Vangronsveld J, Sterckx J, Van Assche F, Clijsters H. 1995. Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Explor. 52(1–2):221–229. doi:10.1016/0375-6742(94)00045-D.
  • Vangronsveld J, Van Assche F, Clijsters H. 1995. Reclamation of a bare industrial area contaminated by non ferrous metals - in situ metal immobilization and revegetation. Environ Pollut. 87(1):51–59. doi:10.1016/S0269-7491(99)80007-4.
  • Vassilev A, Yordanov I, Tsonev T. 1997. Effects of Cd2 on thephysiological state and photosynthetic activity of young barelyplants. Photosynthetica. 34(2):293–302.
  • Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Ecology. 1:1–20. doi:10.5402/2011/402647.
  • Yang J, Ye Z. 2015. Antioxidant enzymes and proteins of wetland plants: their relation to Pb tolerance and accumulation. Environ Sci Pollut Res. 22(3):1931–1939. doi:10.1007/s11356-014-3610-4.
  • Zhao X, Chul Joo J, Lee JK, Kim JY. 2019. Mathematical estimation of heavy metal accumulations in Helianthus annuus L. with a sigmoid heavy metal uptake model. Chemosphere. 220:965–973. doi:10.1016/j.chemosphere.2018.12.210.
  • Zhi-Xin N, Li-na S, Tie-Heng S, Yu-Shuang LI, Hong W. 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J of Env Sc. 19:961–967. doi:10.1016/S1001-0742(07)60158-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.