224
Views
13
CrossRef citations to date
0
Altmetric
Articles

Tolerance and distribution of cadmium in an ornamental species Althaea rosea Cavan

, , , , , , & show all

References

  • Abe T, Fukami M, Ogasawara M. 2008. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci Plant Nutr. 54(4):566–573. doi:10.1111/j.1747-0765.2008.00288.x.
  • Aebi H. 1984. Catalase in vitro. Meth Enzymol. 105:121–126. doi:10.1016/S0076-6879(84)05016-3.
  • Aibibu N, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L. 2010. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol. 101(16):6297–6303. doi:10.1016/j.biortech.2010.03.028.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Assche F, Clijsters H. 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ. 13(3):195–206. doi:10.1111/j.1365-3040.1990.tb01304.x.
  • Baker A. 2008. Metal tolerance. New Phytol. 106:93–111. doi:10.1111/j.1469-8137.1987.tb04685.x.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127(2):139–147. doi:10.1016/S0168-9452(97)00115-5.
  • Cheraghi M, Lorestani B, Khorasani N, Khorasani N, Yousefi N, Karami M. 2011. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol Trace Elem Res. 144(1–3):1133–1141. doi:10.1007/s12011-009-8359-0.
  • Cobbett CS. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123(3):825–832. doi:10.1104/pp.123.3.825.
  • Cosio C, Vollenweider P, Keller C. 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot. 58(1–3):64–74. doi:10.1016/j.envexpbot.2005.06.012.
  • Dai H, Wei S, Twardowska I, Han R, Xu L. 2017. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environ Sci Pollut Res. 24(29):23161–23167. doi:10.1007/s11356-017-9962-9.
  • de Araújo RP, de Almeida AAF, Pereira LS, Mangabeira PA, Souza JO, Pirovani CP, Baligar VC. 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotox Environ Safe. 144:148–157. doi:10.1016/j.ecoenv.2017.06.006.
  • Devi SR, Prasad M. 1998. Copper toxicity in Ceratophyllum demersum L.(Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci. 138:157–165. doi:10.1016/S0168-9452(98)00161-7.
  • Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. 1981. Leaf Senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101. doi:10.1093/jxb/32.1.93.
  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant. 35(4):1281–1289. doi:10.1007/s11738-012-1167-8.
  • Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1):70–77. doi:10.1016/0003-9861(59)90090-6.
  • Fan Y, Li Z, Zhou T, Zhou S, Wu L, Luo Y, Christie P. 2019. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Int J Phytoremediat. :1–9. doi:10.1080/15226514.2018.1556592.
  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J. 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater. 186(1):103–107. doi:10.1016/j.jhazmat.2010.10.122.
  • Gill SS, Khan NA, Tuteja N. 2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 182:112–120. doi:10.1016/j.plantsci.2011.04.018.
  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater. 172(1):479–484. doi:10.1016/j.jhazmat.2009.06.141.
  • Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 53(366):1–11. doi:10.1093/jexbot/53.366.1.
  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB. 2013. Cadmium tolerance in six poplar species. Environ Sci Pollut Res. 20(1):163–174. doi:10.1007/s11356-012-1008-8.
  • Huang H, Li T, Tian S, Gupta DK, Zhang X, Yang XE. 2008. Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Bioresour Technol. 99(14):6088–6096. doi:10.1016/j.biortech.2007.12.056.
  • Jana S, Choudhuri MA. 1982. Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol. 90(3):477–484. doi:10.1111/j.1469-8137.1982.tb04480.x.
  • Küpper H, Küpper F, Spiller M. 1998. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res. 58(2):123–133. doi:10.1023/A:1006132608181.
  • Li H, Liu Y, Zeng G, Zhou L, Wang X, Wang Y, Wang C, Hu X, Xu W. 2014. Enhanced efficiency of cadmium removal by Boehmeria nivea (L) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci. 26(12):2508–2516. doi:10.1016/j.jes.2014.05.031.
  • Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 11(5):591–592.
  • Liu JN, Zhou QX, Wang S, Sun T. 2009. Cadmium tolerance and accumulation of Althaea rosea Cav and its potential as a hyperaccumulator under chemical enhancement. Environ Monit Assess. 149(1–4):419–427. doi:10.1007/s10661-008-0218-5.
  • Liu JN, Zhou QX, Wang S, Sun T, Ma LQ, Wang S. 2008. Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull Environ Contam Toxicol. 80(3):260–265. doi:10.1007/s00128-008-9357-1.
  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D. 2009. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb. J Hazard Mater. 169(1–3):170–175. doi:10.1016/j.jhazmat.2009.03.090.
  • Mahdavian K, Ghaderian SM, Schat H. 2016. Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L under Pb exposure. Environ Exp Bot. 126:21–31. doi:10.1016/j.envexpbot.2016.01.010.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Parmar P, Kumari N, Sharma V. 2013. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud. 54(1):45. doi:10.1186/1999-3110-54-45.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Raskin I, Kumar PN, Dushenkov S, Salt DE. 1994. Bioconcentration of heavy metals by plants. Curr Opin Biotechnol. 5(3):285–290. doi:10.1186/1999-3110-54-45.
  • Rauser WE. 1995. Phytochelatins and related peptides Structure, biosynthesis, and function. Plant Physiol. 109(4):1141–1149. doi:10.1104/pp.109.4.1141.
  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L. 2010. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater. 184(1–3):299–307. doi:10.1016/j.jhazmat.2010.08.036.
  • Saidi I, Chtourou Y, Djebali W. 2014. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol. 171(5):85–91. doi:10.1016/j.jplph.2013.09.024.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2016. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem. 105:290–296. doi:10.1016/j.plaphy.2016.05.019.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2017. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotox Environ Safe. 135:209–215. doi:10.1016/j.ecoenv.2016.10.001.
  • Singh HP, Batish DR, Kohli RK, Arora K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53(1):65–73. doi:10.1007/s10725-007-9205-z.
  • Singh P, Tewari R. 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L plants. J Environ Biol. 24(1):107–112.
  • Singh VP, Srivastava PK, Prasad SM. 2013. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem. 71:155–163. doi:10.1016/j.plaphy.2013.07.003.
  • Sun R, Zhou Q, Wei S. 2011. Cadmium accumulation in relation to organic acids and nonprotein thiols in leaves of the recently found cd hyperaccumulator Rorippa globosa and the Cd-accumulating plant Rorippa islandica. J Plant Growth Regul. 30(1):83–91. doi:10.1007/s00344-010-9176-6.
  • Sun Y, Zhou Q, Wang L, Liu W. 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L as a potential Cd-hyperaccumulator. J Hazard Mater. 161(2–3):808–814. doi:10.1016/j.jhazmat.2008.04.030.
  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotox Environ Safe. 126:138–146. doi:10.1016/j.ecoenv.2015.12.031.
  • Uhlig C, Salemaa M, Vanha-Majamaa I, Derome J. 2001. Element distribution in Empetrum nigrum microsites at heavy metal contaminated sites in Harjavalta, western Finland. Environ Pollut. 112(3):435–442. doi:10.1016/S0269-7491(00)00140-8.
  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith B. 1985. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Russ J Plant Physiol. 121(5):453–461. doi:10.1016/S0176-1617(85)80081-X.
  • Vazquez S, Goldsbrough PB, Carpena RO. 2006. Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plant. 128:487–495. doi:10.1111/j.1399-3054.2006.00764.x.
  • Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas P. 2017. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere. 171:544–553. doi:10.1016/j.chemosphere.2016.12.092.
  • Wilkins DA. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80(3):623–633. doi:10.1111/j.1469-8137.1978.tb01595.x.
  • Wu F, Yang W, Zhang J, Zhou L. 2010. Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater. 177(1–3):268–273. doi:10.1016/j.jhazmat.2009.12.028.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259(1/2):181–189. doi:10.1023/B:PLSO.0000020956.24027.f2.
  • Zeng P, Guo ZH, Cao X, Xiao XY, Liu YN, Shi L. 2018. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediat. 20(4):311–320. doi:10.1080/15226514.2017.1381939.
  • Zhang F, Zhang H, Wang G, Xu L, Shen Z. 2009. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater. 168(1):76–84. doi:10.1016/j.jhazmat.2009.02.002.
  • Zhang H, Guo Q, Yang J, Shen J, Chen T, Zhu G, Chen H, Shao C. 2015. Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation. Ecotox Environ Safe. 120:184–192. doi:10.1016/j.ecoenv.2015.06.003.
  • Zhang H, Jiang Y, He Z, Ma M. 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 162(9):977–984. doi:10.1016/j.jplph.2004.10.001.
  • Zhang S, Chen M, Li T, Xu X, Deng L. 2010. A newly found cadmium accumulator-Malva sinensis Cavan. J Hazard Mater. 173(1–3):705–709. doi:10.1016/j.jhazmat.2009.08.142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.