375
Views
10
CrossRef citations to date
0
Altmetric
Articles

Floriculture: alternate non-edible plants for phyto-remediation of heavy metal contaminated soils

ORCID Icon, , &

References

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH. 2012. Phytoremediation of heavy metals: a green technology. Afr J Biotechnol. 11:4036–14043.
  • Akpor O B, Muchie N. 2010. Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci. 5:1807–1817.
  • Ali Q, Ahsan M, Khaliq I, Elahi M, Ali S, Ali F, Naees M. 2011. Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci. 2:220–232.
  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 111(4):811–815. doi:10.1016/j.foodchem.2008.04.049.
  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS. 2017. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage. 198(Pt 1):132–143. doi:10.1016/j.jenvman.2017.04.060.
  • Asilian E, Ghasemi-Fasaei R, Ronaghi A, Sepehri M, Niazi A. 2018. Effects of microbial inoculations and surfactant levels on biologically- and chemically-assisted phytoremediation of lead-contaminated soil by maize (Zea Mays L.). Chem Ecol. 34(10):964–977. doi:10.1080/02757540.2018.1520844.
  • Azhdarpoor A, Mohammadi P, Dehghani M. 2016. Simultaneous removal of nutrients in a novel anaerobic–anoxic/aerobic sequencing reactor: removal of nutrients in a novel reactor. Int J Environ Sci Technol. 13(2):543–550. doi:10.1007/s13762-015-0871-5.
  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A. 2017. Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431.
  • Cluis C. 2004. Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach Journal. 2:61–67.
  • Cook L, Hesterberg D. 2013. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremed. 15(9):844–860. doi:10.1080/15226514.2012.760518.
  • Ebrahimi M. 2014. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis dehnh and effect on treatment time. DESERT. 19:65–73.
  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A. 2007. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 68(2):345–353. doi:10.1016/j.chemosphere.2006.12.058.
  • Farraji H, Zaman NQ, Tajuddin RM, Faraji H. 2016. Advantages and disadvantages of phytoremediation: a concise review. Int J Environ Technol Sci. 2:69–75.
  • FDA. 2001. Recommendations of the United States Public Health Service Food and Drug Administration. USA: Food and Drug Administration.
  • Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643. doi:10.1099/mic.0.037143-0.
  • Gee GW, Bauder JW. 1986. Particle size analysis. In: Klute A, Editor. Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Madison, WI: American Society of Agronomy/Soil Science Society of America. p. 383–411.
  • Glick D, Barth S, Macleod KF. 2010. Autophagy: cellular and molecular mechanisms. J Pathol. 221(1):3–12. doi:10.1002/path.2697.
  • Govind P, Madhuri S. 2014. Heavy metals causing toxicity in animals and fishes. J Animal Vet Fish Sci. 2:17–23.
  • Ha N T H, Sakakibara M, Sano S, Nhuan M T. 2011. Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. J Hazard Mater. 186(2–3):1384–1391. doi:10.1016/j.jhazmat.2010.12.020.
  • Haag-Kerwer A, Schäfer HJ, Heis S, Walter C, Rausch T. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot. 50(341):1827–1835. doi:10.1093/jxb/50.341.1827.
  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res Int. 22(2):1534–1544. doi:10.1007/s11356-014-3431-5.
  • Iyengar V, Nair P. 2000. Global outlook on nutrition and the environment: meeting the challenges of the next millennium. Sci Total Environ. 249(1–3):331–346. doi:10.1016/S0048-9697(99)00529-X.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • Kartik VP, Jinal HN, Amaresan N. 2016. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. Int J Phytoremed. 18(11):1061–1066. doi:10.1080/15226514.2016.1183576.
  • Kim IS, Kang HK, Johnson-Green P, Lee EJ. 2003. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut. 126(2):235–243. doi:10.1016/S0269-7491(03)00190-8.
  • Kumar JIN, Soni H, Kumar RN, Bhatt I. 2009. Hyperaccumulation and mobility of heavy metals in vegetable crops in India. J Agric Environ. 10:29–38. doi:10.3126/aej.v10i0.2128.
  • Liphadzi MS, Kirkham MB. 2006. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. South Afr J Bot. 72(3):391–397. doi:10.1016/j.sajb.2005.10.010.
  • Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM. 2003. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage sludge farm. Plant Soil. 257(1):171–182. doi:10.1023/A:1026294830323.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature. 409(6820):579–579. doi:10.1038/35054664.
  • Mahmood-Ul-Hassan M, Suthar V, Ahmad R, Yousra M. 2017. Heavy metal phytoextraction—natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Environ Monit Assess. 189(11):591. doi:10.1007/s10661-017-6302-y.
  • Mahmood-Ul-Hassan M, Suthor V, Rafique E, Ahmad R, Yasin M. 2012. Metal contamination of vegetables grown on soils irrigated with untreated municipal effluent. Bull Environ Contam Toxicol. 88(2):204–209. doi:10.1007/s00128-011-0432-7.
  • Mani D, Kumar C, Patel NK. 2016. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower. Ecotoxicol Environ Safe. 124:435–446.
  • Mani D, Kumar C, Patel NK, Sivakumar D. 2015. Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J Environ Sci Technol. 12(4):1211–1222. doi:10.1007/s13762-013-0488-5.
  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM. 2013. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria–effects on phytoremediation strategies. Chemosphere. 92(1):74–83. doi:10.1016/j.chemosphere.2013.02.055.
  • Mattina M I, Lannucci-Berger W, Musante C, White J C. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124(3):375–378. doi:10.1016/S0269-7491(03)00060-5.
  • Mohammadzadeh A, Tavakoli M, Chaichi MR, Motesharezadeh B. 2014. Effects of nickel and PGPBs on growth indices and phytoremediation capability of sunflower (Helianthus annuus L.) Arch Agron Soil Sci. 60(12):1765–1778. doi:10.1080/03650340.2014.898839.
  • Nelson D, Sommers L. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison, WI, USA: Soil Science of America and American Society of Agronomy. p. 961–1010.
  • Nowack B, Schulin R, Robinson BH. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol. 40(17):5225–5232. doi:10.1021/es0604919.
  • Podgorski JE, Eqani S, Khanam T, Ullah R, Shen H, Berg M. 2017. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci Adv. 3(8):e1700935. doi:10.1126/sciadv.1700935.
  • Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002.
  • Rajkumar M, Sandhya S, Prasad M, Freitas H. 2012. Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv. 30:1562–1574.
  • Ramana S, Biswas AK, Singh AB, Kumar A, Ahirwar NK. 2013. Phytoremediation ability of some floricultural plant species. Indian J Plant Physiol. 18:187–190. doi:10.1007/s40502-013-0029-8.
  • Rhoades J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison, WI, USA: Soil science of America and American Society of Agronomy. p. 417–436.
  • Rostami S, Azhdarpoor A. 2019. The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere. 220:818–827. doi:10.1016/j.chemosphere.2018.12.203.
  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M. 2015. Phytoremediation: Mechanisms and Adaptations. In: Hakeem K, Sabir M, Ozturk M, Murmet AR, editors. Soil remediation and plants – prospects and challenges. San Diego, USA: Elsevier. p. 85–105.
  • Saifullah, Meers E, Qadir M, de Caritat P, Tack FM, Du Laing G, Zia MH. 2009. EDTA-assisted Pb phytoextraction. Chemosphere. 74:1279–1291. doi:10.1016/j.chemosphere.2008.11.007.
  • Sangi MR, Shahmoradi A, Zolgharnein J, Azimi GH, Ghorbandoost M. 2008. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J Hazard Mater. 155(3):513–522. doi:10.1016/j.jhazmat.2007.11.110.
  • Sangthong C, Setkit K, Prapagdee B. 2016. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ Sci Pollut Res. 23(1):756–764. doi:10.1007/s11356-015-5318-5.
  • Stanhope KG, Young SD, Hutchinson JJ, Kamath R. 2000. Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation. Environ Sci Technol. 34(19):4123–4127. doi:10.1021/es0010812.
  • Suther VS, Memon KS, Muhammad-Ul-Hassan M. 2014. EDTA-enhanced phytoremediation of contaminated calcareous soils heavy metal bioavailability, extractability and uptake by maize and sesbania. Environ Monit Assess. 186:3957–3968. doi:10.1007/s10661-014-3671-3.
  • Thomas GW. 1996. Soil pH and soil acidity. In Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison, WI, USA: Soil Science of America and American Society of Agronomy. p. 475–490.
  • Torresday JL, Videa JRP, Rosa GD, Parsons J. 2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev. 249:1797–1810. doi:10.1016/j.ccr.2005.01.001.
  • Türkdogan MK, Fevzi K, Kazim K, Ilyas T, Ismail U. 2003. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ Toxicol Pharmacol. 13:175–179.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exp. Bot. 117:28–40. doi:10.1016/j.envexpbot.2015.05.001.
  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M. 1999. Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera gaertin. Chemosphere. 39(12):2159–2169. doi:10.1016/S0045-6535(99)00095-8.
  • WHO. 2011. Adverse health effects of heavy metals in children. Children's health and the environment. Geneva, Switzerland: World Health Organization.
  • WHO/FAO. 2007. Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the thirty-eight session of the Codex Committee on Food Hygiene. Houston, United States of America, ALINORM 07/30/13.
  • Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S. 2011. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol. 168(2):167–173. doi:10.1016/j.jplph.2010.06.005.
  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA. 2018. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng. 120:274–298. doi:10.1016/j.ecoleng.2018.05.039.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. 2011. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere. 83(1):57–62. doi:10.1016/j.chemosphere.2011.01.041.
  • Zhuang P, Yang QW, Wang HB, Shu WS. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 184(1–4):235–242. doi:10.1007/s11270-007-9412-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.