272
Views
6
CrossRef citations to date
0
Altmetric
Articles

Phytoremediaton of priority substances (Pb and Ni) by Phragmites australis exposed to poultry slaughterhouse wastewater

&

References

  • Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY, Hussain S, Bulgariu L. 2018. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere. 190:234–242. doi:10.1016/j.chemosphere.2017.09.136.
  • Arslan Topal EI, Topal M, Öbek E. 2017. Evaluation of recovery of aquatic plants used in wastewater treatment and discharged as waste. IJMSIT. 1(1):21–23.
  • Ashfaq M, Khan MI, Hanif MA. 2009. Use of Morus alba—Bombyx mori as a useful template to assess, Pb entrance in the food chain from wastewater. Environ Entomol. 38(4):1276–1282. doi:10.1603/022.038.0439.
  • Avula RY, Nelson HM, Singh RK. 2009. Recycling of poultry process wastewater by ultrafiltration. Innov Food Sci Emerg Technol. 10(1):1–8. doi:10.1016/j.ifset.2008.08.005.
  • Berndtsson R. 1990. Transport and sedimentation of pollutants in a river reach; a chemical mass-balance approach. Water Resour Res. 26:1549–1558. doi:10.1029/90WR00531.
  • Bonanno G, Lo Giudice. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic. 10:639–645. doi:10.1016/j.ecolind.2009.11.002.
  • Bonanno G, Vymazal J, Cirelli GL. 2018. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci Total Environ. 631–632:252–261. doi:10.1016/j.scitotenv.2018.03.039.
  • Davis PH. 1985. Flora of Turkey and the East Aegean Islands. Vol. 9. Scotland: Edinburgh University Press. p. 724.
  • Demirbaş A. 1999. Proximate and heavy metal composition in chicken meat and tissues. Food Chem. 67(1):27–31. doi:10.1016/S0308-8146(99)00103-X.
  • Deng H, Ye ZH, Wong MH. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut. 132(1):29–40. doi:10.1016/j.envpol.2004.03.030.
  • EPA. 2007. Framework for metal risk assessment, U.S. environmental protection agency. Washington (DC): Office of the Science Advisor.
  • EUWFD. 2000. The EU Water Framework Directive. Brussels (Belgium): European Commission [accessed: 2019 Dec 27]. https://ec.europa.eu/environment/water/water-framework/index_en.html.
  • García-García JD, Peña-Sanabria KA, Sánchez-Thomas R, Moreno-Sánchez R. 2018. Nickel accumulation by the green algae-like Euglena gracilis. J Hazard Mater. 343:10–18. doi:10.1016/j.jhazmat.2017.09.008.
  • Ge X, Zhang N, Phillips GC, Xu J. 2012. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Biores Technol. 124:485–488. doi:10.1016/j.biortech.2012.08.050.
  • Gonzaga MIS, Santos JAG, Ma LQ. 2006. Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric. 63(1):90–101. doi:10.1590/S0103-90162006000100015.
  • Gupta G, Karuppiah M. 1996. Heavy metals in sediments of two Chesapeake Bay tributaries- Wicomico and Pocomoke Rivers. J Hazardous Mater. 50(1):15–29. doi:10.1016/0304-3894(96)01773-6.
  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol. 8(3):639–648. doi:10.1007/BF03326249.
  • Hu Y, Cheng H, Tao S. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ Int. 107:111–130. doi:10.1016/j.envint.2017.07.003.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED. 2001. A fern that hyperaccumulates arsenic. Nature Biotech. 409:579. doi:10.1038/35054664.
  • Mahesar SA, Sherazi STH, Abro K, Kandhro A, Bhanger MI, van de Voort FR, Sedman J. 2008. Application of microwave heating for the fast extraction of fat content from the poultry feeds. Talanta. 75(5):1240–1244. doi:10.1016/j.talanta.2008.01.042.
  • Mahesar SA, Sherazi STH, Niaz A, Bhanger MI, Uddin S, Rauf A. 2010. Simultaneous assessment of zinc, cadmium, lead and copper in poultry feeds by differential pulse anodic stripping voltammetry. Food Chem Toxicol. 48(8–9):2357–2360. doi:10.1016/j.fct.2010.05.071.
  • Markert B. 1992. Establishing of reference plant for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut. 64(3–4):533–538. doi:10.1007/BF00483363.
  • Morari F, Ferro ND, Cocco E. 2015. Municipal Wastewater Treatment with Phragmites australis L. and Typha latifolia L. for Irrigation Reuse. Boron and Heavy Metals. Water Air Soil Pollut. 226:256. doi:10.1007/s11270-015-2336-3.
  • Mulkeen CJ, Williams CD, Gormally MJ, Healy MG. 2017. Seasonal patterns of metals and nutrients in Phragmites australis (Cav.) Trin. ex Steudel in a constructed wetland in the west of Ireland. Ecol Eng. 107:192–197. doi:10.1016/j.ecoleng.2017.07.007.
  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A. 2014. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels. 7:30. doi:10.1186/1754-6834-7-30.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Env Contam Toxicol. 213:113–136.
  • Rámila C, Leiva ED, Bonilla CA, Pasten PA, Pizarro GE. 2015. Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. J Geochem Exp. 150(2015):25–34. doi:10.1016/j.gexplo.2014.12.020.
  • Ranieri E, Young TM. 2012. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands. J Contaminant Hydrol. 129–130:38–45. doi:10.1016/j.jconhyd.2012.01.002.
  • RWPC. 2009. Regulation on water pollution control: sampling and analysis method, 2009. Ankara, Turkey: FAOLEX Official Gazette dated 10.10 and numbered 27372.
  • Sutapa B, Bhattacharyya AK. 2008. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere. 70(7):1264–1272. doi:10.1016/j.chemosphere.2007.07.062.
  • Tezel U, Pierson JA, Pavlostathis SG. 2007. Effect of polyelectrolytes and quaternary ammonium compounds on the anaerobic biological treatment of poultry processing wastewater. Water Res. 41(6):1334–1342. doi:10.1016/j.watres.2006.12.005.
  • Tong YP, Kneer R, Zhu YG. 2004. Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci. 9(1):7–9. doi:10.1016/j.tplants.2003.11.009.
  • Turkez H, Geyikoglu F, Tatar A, Keles MS, Kaplan İ. 2012. The effects of some boron compounds againts heavy metal toxicity in human blood. Exp Toxicol Pathol. 64(1–2):93–101. doi:10.1016/j.etp.2010.06.011.
  • Uluozlu OD, Tuzen M, Mendil D, Soylak M. 2009. Assessment of trace element contents of chicken products from Turkey. J Hazardous Mater. 163(2–3):982–987. doi:10.1016/j.jhazmat.2008.07.050.
  • van der Sluis T, Poppens R, Kraisvitnii P, Rii O, Lesschen JP, Galytska M, Elbersen W. 2013. Reed harvesting from wetlands for bioenergy. Wageningen, The Netherlands: Alterra.
  • Vymazal J. 2016. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ. 544:495–498. doi:10.1016/j.scitotenv.2015.12.011.
  • Vymazal J, Březinová T. 2016. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J. 290:232–242. doi:10.1016/j.cej.2015.12.108.
  • Vymazal J, Kröpfelová L, Švehla J, Chrastný V, Stíchová J. 2009. Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng. 35(2):303–309. doi:10.1016/j.ecoleng.2008.04.007.
  • Wang F, Wang H, Al-Tabbaa A. 2015. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils. J Hazard Mater. 286:503–508. doi:10.1016/j.jhazmat.2015.01.007.
  • Watanabe N, Sato E, Ose Y. 1985. Adsorption and desorption of polydimethylsiloxane, PCBS, cadmium nitrate, copper sulfate, nickel sulfate and zinc nitrate by river surface sediments. Sci Total Environ. 41(2):153–161. doi:10.1016/0048-9697(85)90185-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.