316
Views
5
CrossRef citations to date
0
Altmetric
Articles

Performance of Iris pseudacorus and Typha domingensis for furosemide removal in a hydroponic system

ORCID Icon, , &

References

  • Alonso SG, Catalá M, Maroto RR. 2010. Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ Int. 36:195–201. doi:10.1016/j.envint.2009.11.004.
  • Amaya-Chávez A, Martínez-Tabche L, López-López E, Galar-Martínez M. 2006. Methyl parathion toxicity to and removal efficiency by Typha latifoliain water and artificial sediments. Chemosphere 63:1124–1129. doi:10.1016/j.chemosphere.2005.09.049
  • Aubertheau E, Stalder T, Mondamert L, Ploy M, Dagot C, Labanowski J. 2017. Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Sci Total Environ. 579:1387–1398. doi:10.1016/j.scitotenv.2016.11.136.
  • Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Ishida M, Hisamatsu K, Yunoki A, Mino Y, et al. 2019. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. Sci Total Environ. 657:476–484. doi:10.1016/j.scitotenv.2018.11.433.
  • Azzam MI, Ezzat SM, Othman BA, El-Dougdoug KA. 2017. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci. 31(2):109–121. doi:10.1016/j.wsj.2017.10.001.
  • Barbosa MO, Ribeiro AR, Pereira MFR, Silva AMT. 2016. Eco-friendly LC–MS/MS method for analysis of multi-class micropollutants in tap, fountain, and well water from northern Portugal. Anal Bioanal Chem. 408(29):8355–8367. doi:10.1007/s00216-016-9952-7.
  • Berthod A, Carda-Broch S, Garcia-Alvarez-Coque MC. 1999. Hydrophobicity of Ionizable Compounds. A theoretical study and measurements of diuretic octanol-water partition coefficients by countercurrent chromatography. Anal Chem. 71(4):879–888. doi:10.1021/ac9810563.
  • Brisson J, Chazarenc F. 2009. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection?. Sci Total Environ. 407(13):3923–3930. doi:10.1016/j.scitotenv.2008.05.047.
  • Cabeza Y, Candela L, Ronen D, Teijon G. 2012. Monitoring the occurence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J Hazardous Mater. 239–240:32–39. doi:10.1016/j.jhazmat.2012.07.032.
  • Cantwell MG, Katz DR, Sullivan JC, Shapley D, Lipscomb J, Epstein J, Juhl AR, Knudson C, O’Mullan GD. 2018. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. Water Res. 137:335–343. doi:10.1016/j.watres.2017.12.044.
  • Carvalho PN, Basto MCP, Almeida CMR, Brix H. 2014. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res. 21:11729–11763. doi:10.1007/s11356-014-2550-3.
  • Castroviejo S, ed., 1986/2013. Flora iberica. Plantas vasculares de la Península Ibérica e Islas Baleares. vol. 20 Liliaceae-Agavaceae. Madrid: Real Jardín Botánico-CSIC.
  • Dhir B. 2013. Phytoremediation: Role of aquatic plants in environmental clean-up. New Delhi: Springer.
  • Di Luca GA, Maine MA, Mufarrege MM, Hadad HR, Bonetto CA. 2015. Influence of Typha domingensis in the removal of high P concentrations from water. Chemosphere. 138:405–411. doi:10.1016/j.chemosphere.2015.06.068.
  • Dietz AC, Schnoor JL. 2001. Advances in phytoremediation. Environ Health Pers. 109:163–168. doi:10.2307/3434854.
  • Dordio A, Carvalho A. 2018. Removal processes of pharmaceuticals in constructed wetlands. In: S. Alexandros, editor. Constructed wetlands for industrial wastewater treatment. Hoboken, NJ: Wiley-Blackwell. doi:10.1002/9781119268376.ch17.
  • Dordio AV, Duarte C, Barreiros M, Carvalho AJP, Pinto AP, Costa CT. 2009. Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp. – Potential use for phytoremediation?. Biores Technol. 100(3):1156–1161. doi:10.1016/j.biortech.2008.08.034.
  • Ediviani W, Priadi CR, Moersidik SS. 2018. Nutrient uptake from liquid digestate using ornamental aquatic macrophytes (Canna indica, Iris pseudacorus, Typha latifolia) in a constructed wetland system. J Phys: Conf Ser. 1022(1):012052. doi:10.1088/1742-6596/1022/1/012052.
  • Franco J, Rocha Afonso M. 1994. Nova Flora de Portugal (Continente e Açores), vol. III (fascículo I), ALISMATACEAE – IRIDACEAE. Lisbon: Escolar Editora. ISBN 9789725920817
  • Gomes MVT, Souza RR, Teles VS, Mendes EA. 2014. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. 103 (2014):228–233. doi:10.1016/j.chemosphere.2013.11.071.
  • González-Alonso S, Merino LM, Esteban S, Alda ML, Barceló D, Durán JJ, López-Martínez J, Aceña J, Pérez S, Mastroianni N, et al. 2017. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ Pollu. 229:241–254. doi:10.1016/j.envpol.2017.05.060.
  • Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini A, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, et al. 2003. Constructed wetlands for the treatment of organic pollutants. J Soils Sediments. 3 (2):109–124. doi:10.1065/jss2003.03.70.
  • Huang J, Yan C, Cao C, Peng C, Liu J, Guan W. 2018. Performance evaluation of Iris pseudacorus constructed wetland for advanced wastewater treatment under long-term exposure to nanosilver. Ecol Eng. 116:188–195. doi:10.1016/j.ecoleng.2018.03.003.
  • INFARMED. 2014. Estatística do Medicamento 2014/Medicines Statistic 2014.
  • Kadlec RH, Wallace SD. 2009. Treatment wetlands. Boca Raton (FL): CRC Press, p. 2009.
  • Lin YL, Li BK. 2016. Removal of pharmaceuticals and personal care products by Eichhornia crassipe and Pistia stratiotes. J Taiwan Inst Chem Eng. 58:318–323. doi:10.1016/j.jtice.2015.06.007.
  • Lv T, Zhang Y, Casas ME, Carvalho PN, Arias CA, Bester K, Brix H. 2016. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere. 148:459–466. doi:10.1016/j.chemosphere.2016.01.064.
  • Machado AI, Beretta M, Fragoso R, Duarte E. 2017. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J Environ Manag. 187:560–570. doi:10.1016/j.jenvman.2016.11.015.
  • Mackul’ak T, Mosný M, Škubák J, Grabic R, Birošová L. 2015. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants. Environ Toxicol Pharmacol. 39:969–973. doi:10.1016/j.etap.2015.02.018.
  • Madikizela LM, Ncube S, Chimuka L. 2018. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: a review. Sci Total Environ. 636:477–486. doi:10.1016/j.scitotenv.2018.04.297.
  • O’Neil MJ, ed. 2001. The Merck Index – an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station, NJ: Merck and Co., Inc.
  • OECD. 2017. Demographic references: General demographics. OECD Health Statistics (database). [accessed on 2018 Nov 13]. Available online at https://stats.oecd.org/Index.aspx?DataSetCode=HEALTH_DEMR
  • Paíga P, Delerue-Matos C. 2016. Determination of pharmaceuticals in groundwater collected in five cemeteries’ areas (Portugal). Sci Total Environ. 569–570:16–22. doi:10.1016/j.scitotenv.2016.06.090.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z. 2018. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci. 532:236–260. doi:10.1016/j.jcis.2018.07.118.
  • Rovira AD. 1969. Plant root exudates. Bot Rev. 35(1):35–57. doi:10.1007/BF02859887.
  • Salgado R, Noronha JP, Oehmen A, Carvalho G, Reis MAM. 2010. Analysis of 65 pharmaceuticals and personal care products in 5 wastewater treatment plants in Portugal using a simplified analytical methodology. Water Sci Technol. 62(12):2862–2871. doi:10.2166/wst.2010.985.
  • Sangster JLD. 1994. Sangster Res. Lab. Montreal (Quebec).
  • Santos LHMLM, Gos M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM. 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ. 461:302–316. doi:10.1016/j.scitotenv.2013.04.077.
  • Schwartz T, Kohnen¸ W, Jansen B, Obst U. 2003. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol. 43(3):325–335. doi:10.1111/j.1574-6941.2003.tb01073.x.
  • Silvestrini NEC, Hadad HR, Maine MA, Sánchez GC, Pedro MC, Caffaratti SE. 2019. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate. Environ Sci Pollut Res. 26(8):8019–8027. doi:10.1007/s11356-019-04280-5.
  • Thiebault T, Chassiot L, Fougère L, Destandau E, Simonneau A, Beek PV, Souhaut M, Chapron E. 2017. Record of pharmaceutical products in river sediments: a powerful tool to assess the environmental impact of urban management?. Anthropocene. 18:47–56. doi:10.1016/j.ancene.2017.05.006.
  • Verhoeven JTA, Meuleman AFM. 1999. Wetlands for wastewater treatment: opportunities and limitations. Ecol Eng. 12(1–2):5–12. doi:10.1016/S0925-8574(98)00050-0.
  • Verlicchi P, Galletti A, Petrovic M, Barceló D, Aukidy MA, Zambello E. 2013. Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed — analysis of their respective contributions. Sci Total Environ. 454–455:411–425. doi:10.1016/j.scitotenv.2013.03.044.
  • Verlicchi P, Zambello E. 2014. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ. 470–471:1281–1306. doi:10.1016/j.scitotenv.2013.10.085.
  • Vymazal J. 2007. Removal of nutrients in various types of constructed wetlands. Environ Sci Technol. 380(1–3):46–65. doi:10.1016/j.scitotenv.2006.09.014.
  • Vymazal J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol. 45:61–69. doi:10.1021/es101403q.
  • Vymazal J. 2013. Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng. 61:582–592. doi:10.1016/j.ecoleng.2013.06.023.
  • Vymazal J, Březinová TD, Koželuh M, Kule L. 2017. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic – the first year of monitoring. Ecol Eng. 98:354–364. doi:10.1016/j.ecoleng.2016.08.010.
  • Vymazal J, Kröpfelová L. 2015. Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecol Eng. 80:202–208. doi:10.1016/j.ecoleng.2015.09.017.
  • Wang Q, Que X, Li C, Xiao B. 2014. Phytotoxicity of atrazine to emergent hydrophyte, Iris pseudacorus L. Bull Environ Contam Toxicol. 92(3):300–305. doi:10.1007/s00128-013-1178-1.
  • Wu J, Cui N, Cheng S. 2013. Effects of sediment anoxia on growth and root respiratory metabolism of Iris pseudacorus: Implications for vegetation restoration of eutrophic waters in China. Ecol Eng. 53:194–199. doi:10.1016/j.ecoleng.2012.12.043.
  • Wu X, Ernst F, Conkle JL, Gan J. 2013. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int. 60:15–22. doi:10.1016/j.envint.2013.07.015.
  • Yalkowsky SH, Dannenfelser RM. 1992. Aquasol database of aqueous solubility. 5th ed. Tucson (AZ): College of Pharmacy, University of Arizona.
  • Yang Y, Ok YS, Kim K, Kwon EE, Tsang YF. 2017. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ. 596–597:303–320. doi:10.1016/j.scitotenv.2017.04.102.
  • Zhang Y, Lv T, Carvalho PN, Arias CAA, Chen Z, Brix H. 2016. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environ Sci Pollut Res. 23(3):2890–2898. doi:10.1007/s11356-015-5552-x.
  • Zuccato E, Castiglioni S, Fanelli R. 2005. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater. 122:205–209. doi:10.1016/j.jhazmat.2005.03.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.