798
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater

ORCID Icon & ORCID Icon

References

  • Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA. 2013. Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int. 2013:1–7. doi:10.1155/2013/890803.
  • Ajayi TO, Ogunbayio AO. 2012. Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J Sustain Dev. 5:80–90. doi:10.5539/jsd.v5n7p80.
  • Akinbile CO, Yusoff MS. 2012. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediation. 14(3):201–211. doi:10.1080/15226514.2011.587482.
  • Akratos CS, Papaspyros JNE, Tsihrintzis VA. 2008. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chem Eng J. 143(1–3):96–110. doi:10.1016/j.cej.2007.12.029.
  • Akratos CS, Papaspyros JNE, Tsihrintzis VA. 2009a. Artificial neural network use in ortho-phosphate and total phosphorus removal prediction in horizontal subsurface flow constructed wetlands. Biosyst Eng. 102(2):190–201. doi:10.1016/j.biosystemseng.2008.10.010.
  • Akratos CS, Papaspyros JNE, Tsihrintzis VA. 2009b. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresour Technol. 100(2):586–596. doi:10.1016/j.biortech.2008.06.071.
  • Akratos CS, Tsihrintzis VA. 2007. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng. 29(2):173–191. doi:10.1016/j.ecoleng.2006.06.013.
  • APHA. 2005. Standard methods for the examination of water and wastewater.
  • Axtell NR, Sternberg SPK, Claussen K. 2003. Lead and nickel removal using microspora and Lemna minor. Bioresour Technol. 89(1):41–48. doi:10.1016/S0960-8524(03)00034-8.
  • Azeez NM, Sabbar AA. 2012. Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery. J Appl Phytotechnology Environ Sanit. 1:163–172.
  • Bagheri M, Mirbagheri SA, Ehteshami M, Bagheri Z. 2015. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Safe Environ Prot. 93:111–123. doi:10.1016/j.psep.2014.04.006.
  • Batty LC, Baker AJM, Wheeler BD. 2002. Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Ann Bot. 89(4):443–449. doi:10.1093/aob/mcf067.
  • Baxter CW, Smith DW, Stanley SJ. 2004. A comparison of artificial neural networks and multiple regression methods for the analysis of pilot-scale data. J Environ Eng Sci. 3(Supplement 1):S45–S58. doi:10.1139/s03-081.
  • Daud MK, Ali S, Abbas Z, Zaheer IE, Riaz MA, Malik A, Hussain A, Rizwan M, Zia-Ur-Rehman M, Zhu SJ. 2018. Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chem. 2018:1–9. doi:10.1155/2018/351540.
  • Debusk TA, Peterson JE, Reddy KR. 1995. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters. Ecol Eng. 5:371–390. doi:10.1016/0925-8574(95)00033-X.
  • Deng Y, Ni F. 2013. Review of ecological floating bed restoration in polluted water. J Water Resour Protect. 5(12):1203–1209. doi:10.4236/jwarp.2013.512128.
  • El-Gendy AS. 2008. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth. Int J Phytoremediation. 10(1):14–30. doi:10.1080/15226510701827010.
  • Emerson D, Weiss J V, Megonigal JP. 1999. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microbiol. 65(6):2758–2761. doi:10.1128/AEM.65.6.2758-2761.1999.
  • Ergönül MB, Nassouhi D, Atasağun S. 2020. Modeling of the bioaccumulative efficiency of Pistia stratiotes exposed to Pb, Cd, and Pb + Cd mixtures in nutrient-poor media. Int J Phytoremediation. 22(2):201–209. doi:10.1080/15226514.2019.1652566.
  • Favas PJC, Pratas J. 2013. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation. E3S Web Conf. 1:2–4. doi:10.1051/e3sconf/20130113007.
  • Fonkou T, Agendia P, Kengne I, Akoa A, Nya J. 2002. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lagoon systems in Cameroon. Int. Symp. Environ. Pollut. Control Waste Manag. p. 7–10.
  • Fu X, He X. 2015. Nitrogen and phosphorus removal from contaminated water by five aquatic plants. 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC-15). p. 1274–1277. doi:10.2991/meic-15.2015.290.
  • Govindaraju RS. 2000. Task committee on application of artificial neural networks in hydrology. Artificial neural networks in hydrology. II: hydrologic application. J Hydrol Eng. 5:124–136.
  • Indah S, Sudiarto A, Renggaman A, Lim H. 2019. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. J Environ Manage. 231:763–769. doi:10.1016/j.jenvman.2018.10.070.
  • Karaca F, Özkaya B. 2006. NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environ Model Softw. 21(8):1190–1197. doi:10.1016/j.envsoft.2005.06.006.
  • Karul C, Soyupak S, Çilesiz AF, Akbay N, Germen E. 2000. Case studies on the use of neural networks in eutrophication modeling. Ecol Modell. 134(2–3):145–152. doi:10.1016/S0304-3800(00)00360-4.
  • Kutty SRM, Ngatenah SNI, Isa MH, Malakahmad A. 2009. Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Acad Sci Eng Technol. 60:826–831.
  • Li S, Wang L, Chen P. 2013. The effects of purifying livestock wastewater by different aquatic plants. 2014 Int. Conf. Mater. Renew. Energy Environ. Vol. 2. p. 649–652. doi:10.1109/ICMREE.2013.6893757.
  • Mishra S, Mohanty M, Pradhan C, Patra HK, Das R, Sahoo S. 2013. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes – a case study at JK Paper mill, Rayagada, India. Environ Monit Assess. 185(5):4347–4359. doi:10.1007/s10661-012-2873-9.
  • Mohedano RA, Costa RHR, Tavares FA, Belli P. 2012. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour Technol. 112:98–104. doi:10.1016/j.biortech.2012.02.083.
  • Mukherjee B, Majumdar M, Gangopadhyay A, Chakraborty S, Chaterjee D. 2015. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia stratiotes). Int J Phytoremediation. 17(7):651–656. doi:10.1080/15226514.2014.950415.
  • National Oceanic and Atmospheric Administration; [accessed 2019 Sep 5]. https://www.oceanservice.noaa.gov/education/kits/estuaries/media/supp_estuar10f_ph.html.
  • Niveth C, Subraja S, Sowmya R, Induja NM. 2016. Water lettuce for removal of nitrogen and phosphate from sewage. J Mech Civ Eng. 13(2):104–107.
  • Onkal-Engin G, Demir I, Engin SN. 2005. Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Softw. 20(7):843–850. doi:10.1016/j.envsoft.2004.04.012.
  • Owens CS, Smart RM, Dick GO. 2014. Effects of salinity and pH on growth of giant salvinia (Salvinia molesta mitchell). J Aquat Plant Manag. 52:93–96.
  • Ozengin N, Elmaci A, Yonar T. 2016. Application of artificial neural network in horizontal subsurface flow constructed wetland for nutrient removal prediction. Appl Ecol Env Res. 14(4):305–324. doi:10.15666/aeer/1404_305324.
  • Quinlan JR. 1992. Learning with continuous classes. 5th Australian Joint Conference on Artificial Intelligence. World Scientific. Vol. 92. p. 343–348.
  • Rahman MA, Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere. 83(5):633–646. doi:10.1016/j.chemosphere.2011.02.045.
  • Ready KR, Kadlec RH, Flaig E, Gale PM. 1999. Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol. 29:83–146. doi:10.1080/10643389991259182.
  • Reddy SSG, Raju AJS, Kumar BM. 2015. Phytoremediation of sugar industrial water effluent using various hydrophytes. Int J Environ Sci. 5:1147–1158.
  • Rezania S, Ponraj M, Din MF, Chelliapan S, Md Sairan F. 2014. Effectiveness of Eichhornia crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalin Water Treat. 57:360–365. doi:10.1080/19443994967305.
  • Saha P, Shinde O, Sarkar S. 2017. Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation. 19(1):87–96. doi:10.1080/15226514.2016.1216078.
  • Sato K, Sakui H, Sakai Y, Tanaka S. 2002. Long-term experimental study of the aquatic plant system for polluted river water. Water Sci Tech. 46(11–12):217–224. doi:10.2166/wst.2002.0741.
  • Shah M, Hashmi HN, Ali A, Ghumman AR. 2014. Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J Environ Heal Sci Eng. 12:106.
  • Singh D, Gupta R, Tiwari A. 2012. Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. J Pharm Res. 5:1578–1582.
  • Sooknah RD, Wilkie AC. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng. 22(1):27–42. doi:10.1016/j.ecoleng.2004.01.004.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 68:323–329. doi:10.1016/j.chemosphere.2006.12.064.
  • Victor KK, Séka Y, Norbert KK, Sanogo TA, Celestin AB. 2016. Phytoremediation of wastewaters toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediation. 18(10):949–955. doi:10.1080/15226514.2016.1183567.
  • Wang Y, Witten IH, van Someren M, Widmer G. 1997. Inducing models trees for continuous classes. Proceedings of the Poster Papers of the European Conference on Machine Learning, Department of Computer Science, University of Waikato, New Zeland.
  • Wu LM, Cong HB, Wang XF, Zhang Q. 2012. Effect of three kinds of floating-bed plants and artificial plants on nitrogen and phosphorus removal in water. Environ Sci Technol. 23:12–16.
  • Ye ZH, Cheung KC, Wong MH. 2001. Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Can J Bot. 79:314–320. doi:10.1139/cjb-79-3-314.
  • Yetilmezsoy K, Sapci-Zengin Z. 2009. Stochastic modeling applications for the prediction of COD removal efficiency of UASB reactors treating diluted real cotton textile wastewater. Stoch Environ Res Risk Assess. 23(1):13–26. doi:10.1007/s00477-007-0191-5.
  • Zhang Y, Pan B. 2014. Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem Eng J. 249:111–120. doi:10.1016/j.cej.2014.03.073.
  • Zhang L, Scholz M, Mustafa A, Harrington R. 2008. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water Res. 42:3519–3527. doi:10.1016/j.watres.2008.04.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.