183
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Aquatic pH on chemical speciation, phytochelation and vacuolar compartmentalization of arsenic in Vallisneria denseserrulata (Makino)

, , , , , , , & show all

References

  • Abdul SM, Jayasinghe EP, CC. Jayasumana, De Silva 2015. Arsenic and human health effects: a review. Environ Toxicol Pharmacol. 40(3):828–846. doi:10.1016/j.etap.2015.09.016.
  • Baker CJ, Mock NM. 1994. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tiss Organ Cult. 39(1):7–12. doi:10.1007/BF00037585.
  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Chen G, Feng T, Li Z, Chen Z, Chen Y, Wang H, Xiang Y. 2017. Influence of sulfur on the arsenic phytoremediation using Vallisneria natans (Lour.) Hara. Bull Environ Contam Toxicol. 99(3):411–414. doi:10.1007/s00128-017-2135-1.
  • Chen G, Liu X, Xu J, Brookes PC, Wu J. 2014. Arsenic species uptake and subcellular distribution in Vallisneria natans (Lour.) Hara as influenced by aquatic pH. Bull Environ Contam Toxicol. 92(4):478–482. doi:10.1007/s00128-013-1195-0.
  • Chen M, Ma LQ. 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J. 65(2):491–499. doi:10.2136/sssaj2001.652491x.
  • Chowdhury MT, Deacon CM, Jones GD, Huq SI, Williams PN, Hoque AM, Winkel LH, Price AH, Norton GJ, Meharg AA. 2017. Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco-and macro-elemental status. Sci Total Environ. 590:406–415. doi:10.1016/j.scitotenv.2016.11.191.
  • da Luz BR. 2006. Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol. 172(2):305–318. doi:10.1111/j.1469-8137.2006.01823.x.
  • Devi SR, Prasad M. 1998. Copper toxicity in Ceratophyllum demersum L.(Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci. 138(2):157–165. doi:10.1016/S0168-9452(98)00161-7.
  • Diaz-Pulido G, Cornwall C, Gartrell P, Hurd C, Tran DV. 2016. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs. 35(4):1327–1341. doi:10.1007/s00338-016-1481-5.
  • Du Z, Bramlage WJ. 1992. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem. 40(9):1566–1570. doi:10.1021/jf00021a018.
  • Flora SJ. 2015. Arsenic: chemistry, occurrence, and exposure. In: Handbook of arsenic toxicology. Oxford: Academic Press. p. 1–49.
  • Gupta P, Seth CS. 2019. Nitrate supplementation attenuates As (V) toxicity in Solanum lycopersicum L. cv Pusa Rohini: insights into As (V) sub-cellular distribution, photosynthesis, nitrogen assimilation and DNA damage. Plant Physiol Biochem. 139:44–55. doi:10.1016/j.plaphy.2019.03.007.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station (2nd ed., 347). Oakland (CA): University of California.
  • Hussner A, Mettler‐Altmann T, Weber AP, Sand‐Jensen K. 2016. Acclimation of photosynthesis to supersaturated CO 2 in aquatic plant bicarbonate users. Freshw Biol. 61(10):1720–1732. doi:10.1111/fwb.12812.
  • Iriel A, Lagorio MG, Cirelli F. 2015. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere. 138:383–389. doi:10.1016/j.chemosphere.2015.06.053.
  • Irshad S, Xie Z, Wang J, Nawaz A, Luo Y, Wang Y, Mehmood S. 2019. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. J Hazard Mater. 381:120903. doi:10.1016/j.jhazmat.2019.120903.
  • Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S. 2019. Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. Cadmium toxicity and tolerance in plants. Amsterdam: Elsevier. p. 495–529.
  • Kidwai M, Dhar YV, Gautam N, Tiwari M, Ahmad IZ, Asif MH, Chakrabarty D. 2019. Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification. J Hazard Mater. 362:383–393. doi:10.1016/j.jhazmat.2018.09.029.
  • Koehler LH. 1952. Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal Chem. 24(10):1576–1579. doi:10.1021/ac60070a014.
  • Lafabrie C, Major K, Major C, Cebrián J. 2011. Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis. Chemosphere. 82(10):1393–1400. doi:10.1016/j.chemosphere.2010.11.070.
  • Laghmouchi Y, Belmehdi O, Bouyahya A, Senhaji NS, Abrini J. 2017. Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal Agric Biotechnol. 10:156–160. doi:10.1016/j.bcab.2017.03.002.
  • Le XC, Yalcin S, Ma M. 2000. Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environ Sci Technol. 34(11):2342–2347. doi:10.1021/es991203u.
  • Li B, Gu B, Yang Z, Zhang T. 2018. The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: a case study on Vallisneria natans (Lour.) Hara. Ecotox Environ Safe. 165:224–231. doi:10.1016/j.ecoenv.2018.09.023.
  • Lutts S, Kinet J, Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals Botany. 78(3):389–398. doi:10.1006/anbo.1996.0134.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature. 409 (6820):579–579. doi:10.1038/35054664.
  • Maclachlan S, Zalik S. 1963. Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot. 41(7):1053–1062. doi:10.1139/b63-088.
  • Mascher R, Lippmann B, Holzinger S, Bergmann H. 2002. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163(5):961–969. doi:10.1016/S0168-9452(02)00245-5.
  • Mir KA, Rutter A, Koch I, Smith P, Reimer KJ, Poland JS. 2007. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta. 72(4):1507–1518. doi:10.1016/j.talanta.2007.01.068.
  • Prum C, Dolphen R, Thiravetyan P. 2018. Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius − endophytic Arthrobacter creatinolyticus interactions. J Environ Manage. 213:11–19. doi:10.1016/j.jenvman.2018.02.060.
  • Sghaier DS, Pedro B, Duarte I, Caçador, Sleimi N. 2019. 16 Arsenic tolerance mechanisms in halophytes: the case of Tamarix gallica. Halophytes and climate change: adaptive mechanisms and potential uses: 255.
  • Singh HP, Batish DR, Kohli RK, Arora K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53(1):65–73. doi:10.1007/s10725-007-9205-z.
  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM. 2015. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf. 112:247–270. doi:10.1016/j.ecoenv.2014.10.009.
  • Sun X, Doner HE. 1996. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Sci. 161(12): 865–872. doi: 10.1097/00010694-199612000-00006.
  • Sun G. 2004. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol. 198(3):268–271. doi:10.1016/j.taap.2003.10.017.
  • Szabados L, Savoure A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15(2):89–97. doi:10.1016/j.tplants.2009.11.009.
  • Tu S, Ma L. 2003. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot. 50(3):243–251. doi:10.1016/S0098-8472(03)00040-6.
  • Yang Q, Tu S, Wang G, Liao X, Yan X. 2012. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytorem. 14(1):89–99. doi:10.1080/15226510903567471.
  • Yang X, Chen H, Dai X, Xu W, He Z, Ma M. 2009. Evidence of vacuolar compartmentalization of arsenic in the hyperaccumulator Pteris vittata. Chin Sci Bull. 54(22):4229–4233. doi:10.1007/s11434-009-0675-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.