366
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula tripterocarpa

, &

References

  • Aebi H. 1984. Catalase in vitro. Meth Enzymol. 105:121–126.
  • Al-Rifai A. 2018. Identification and evaluation of in-vitro antioxidant phenolic compounds from the Calendula tripterocarpa Rupr. South Afr J Bot. 116:238–244. doi:10.1016/j.sajb.2018.04.007.
  • Amooaghaie R, Zangene-Madar F, Enteshari SH. 2017. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Eco Environ Saf. 139:210–218. doi:10.1016/j.ecoenv.2017.01.037.
  • Chatelain PG, Pintado ME, Vasconcelos MW. 2014. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci. 215–216:134–140. doi:10.1016/j.plantsci.2013.11.009.
  • Chen CY, Yang CY, Chen AH. 2011. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosan with epichlorohydrin. J Environ Manag. 92(3):796–802. doi:10.1016/j.jenvman.2010.10.029.
  • Deng H, Ye ZH, Wong MH. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut. 132(1):29–40. doi:10.1016/j.envpol.2004.03.030.
  • Farouk S, Mosa AA, Taha AA, Ibrahim HM, ELGahmery AM. 2011. Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. J Stress Physiol Biochem. 7:99–116.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi:10.1104/pp.59.2.309.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid and peroxidation. Arch Biochem Biophys. 125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants. 25(2):313–326. doi:10.1007/s12298-018-0633-1.
  • Hussain A, Maitra J, Khan KA. 2017. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Appl Water Sci. 7 (8):4525–4537.
  • Kamari A, Pulford ID, Hargreaves JS. 2011. Binding of heavy metal contaminants onto chitosans–an evaluation for remediation of metal contaminated soil and water. J Environ Manag. 92(10):2675–2682. doi:10.1016/j.jenvman.2011.06.005.
  • Kamari A, Pulford ID, Hargreaves JS. 2012. Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosan. Intl J Phytoremed. 14(9):894–907. doi:10.1080/15226514.2011.636401.
  • Katiyar D, Hemantaranjan A, Singh B. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Ind J Plant Physiol. 20(1):1–9. doi:10.1007/s40502-015-0139-6.
  • Lešková A, Zvarík M, Araya T, Giehl R. 2019. Nickel toxicity targets cell wall-related processes and PIN2-mediated auxin transport to inhibit root elongation and gravitropic responses in Arabidopsis. Plant Cell Physiol. 61:519–535. doi:10.1093/pcp/pcz217.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.
  • Malerba M, Cerana R. 2016. Chitosan effects on plant systems. IJMS. 17(7):996–1010. doi:10.3390/ijms17070996.
  • Mizuno T, Nakahara Y, Fujimori T, Yoshida H. 2018. Natural revegetation potential of Japanese wild thyme (Thymus quinquecostatus Celak.) on serpentine quarries. Ecol Res. 33(4):777–788. doi:10.1007/s11284-018-1575-3.
  • Nabaei M, Amooaghaie R. 2019a. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. Environ Sci Pollut Res. 27(7):6981–6994. doi:10.1007/s11356-019-07283-4.
  • Nabaei M, Amooaghaie R. 2019b. Nitric oxide is involved in the regulation of melatonin-induced antioxidant responses in Catharanthus roseus roots under cadmium stress. Bot. 97(12):681–690. doi:10.1139/cjb-2019-0107.
  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int. 125:365–385. doi:10.1016/j.envint.2019.01.067.
  • Roccotiello E, Serrano HC, Mariotti MG, Branquinho C. 2015. Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere. 119:1372–1378. doi:10.1016/j.chemosphere.2014.02.031.
  • Sekabira K, Oryem-Origa H, Basamba TA, Mutumba G, Kakudidi E. 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol. 7(3):435–446. doi:10.1007/BF03326153.
  • Shaheen SM, Rinklebe J. 2015. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated flood plain soil. Eco Eng. 74 (1):319–326. doi:10.1016/j.ecoleng.2014.10.024.
  • Shaheen SM, Rinklebe J, Selim MH. 2015. Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int J Environ Sci Technol. 12(9):2765–2776. doi:10.1007/s13762-014-0713-x.
  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A. 2018. Nickel; whether toxic or essential for plants and environment – a review. Plant Physiol Biochem. 132:641–651. doi:10.1016/j.plaphy.2018.10.014.
  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TN. 2013. Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol. 10(5):1129–1140. doi:10.1007/s13762-013-0245-9.
  • Tham LX, Nagasawa N, Matsuhashi S, Ishioka NS, Ito T, Kume T. 2001. Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiation Physic Chem. 61(2):171–175. doi:10.1016/S0969-806X(00)00388-1.
  • Turan V. 2019. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Eco Environ Saf. 183:109594. doi:10.1016/j.ecoenv.2019.109594.
  • Turan V, Khan SA, Ur-Rahman M, Iqbal M, Ramzani PMA, Fatima M. 2018. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Eco Environ Saf. 161:409–419. doi:10.1016/j.ecoenv.2018.05.082.
  • Turan V, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan WUD. 2018. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch Agron Soil Sci. 64 (8):1053–1067. doi:10.1080/03650340.2017.1410542.
  • Türker OC, Baran T. 2018. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Int J Phytoremed. 20(2):175–183. doi:10.1080/15226514.2017.1350137.
  • Valivand M, Amooaghaie R, Ahadi AM. 2019a. Interplay between hydrogen sulfide and calcium/calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environ Exp Bot. 158:40–50. doi:10.1016/j.envexpbot.2018.11.006.
  • Valivand M, Amooaghaie R, Ahadi AM. 2019b. Seed priming with H2S and Ca2+ trigger signal memory that induces cross-adaptation against nickel stress in zucchini seedlings. Plant Physiol Biochem. 143:286–298. doi:10.1016/j.plaphy.2019.09.016.
  • Vasconcelos MW. 2014. Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Plant Sci. 5:616–619.
  • Wang FY, Lin XG, Yin R. 2007. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens: a field case. Environ Pollut. 147(1):248–255. doi:10.1016/j.envpol.2006.08.005.
  • Weng GY, Wang ZQ, Wu LH, Luo YM, Song J, Qian W, Lin Q, Wang FY, Jiang YG, Dai XL, et al. 2005. Effect of degradable chelate and microbial preparation on the function of Elsholtzia splendens phytoremedying contaminated soil. Soils. 37:152–157.
  • Yang J, Yang J, Huang J. 2017. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean – A field case. Ecol Eng. 109:35–40. doi:10.1016/j.ecoleng.2017.09.001.
  • Yi N, Wu Y, Fan L, Hu S. 2019. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Pol J Environ Stud. 28(3):1461–1468. doi:10.15244/pjoes/89577.
  • Zong H, Liu S, Xing R, Chen X, Li P. 2017. Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicol Environ Saf. 138:271–278. doi:10.1016/j.ecoenv.2017.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.