164
Views
4
CrossRef citations to date
0
Altmetric
Articles

A fixed bed column study of natural and chemically modified Lagerstroemia speciosa bark for removal of synthetic Cr(VI) ions from aqueous solution

, &

References

  • Ajmani A, Shahnaz T, Narayanan S, Narayanasamy S. 2019. Equilibrium, kinetics and thermodynamics of hexavalent chromium biosorption on pristine and zinc chloride activated Senna siamea seed pods. J Chem Ecol. 35(4):379–396. doi:10.1080/02757540.2019.1584614.
  • Aksu Z, Gonen F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39(5):599–613. doi:10.1016/S0032-9592(03)00132-8.
  • APHA. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.
  • Banerjee M, Bar N, Basu RK, Das SK. 2017. Comparative study of adsorptive removal of Cr (VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res. 24(11):10604–10620. doi:10.1007/s11356-017-8582-8.
  • Banerjee M, Bar N, Basu RK, Das SK. 2018. Removal of Cr (VI) from its aqueous solution using green adsorbent pistachio shell: a fixed bed column study and GA-ANN modeling. Water Conserv Sci Eng. 3(1):19–31. doi:10.1007/s41101-017-0039-x.
  • Baral SS, Das N, Ramulu TS, Sahoo SK, Das SN, Chaudhury GR. 2009. Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater. 161(2–3):1427–1435. doi:10.1016/j.jhazmat.2008.04.127.
  • Bohart GS, Adams EQ. 1920. Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc. 42(3):523–544. doi:10.1021/ja01448a018.
  • Garba A, Nasri NS, Basri H, Zain HM, Hayatu US, Abdulrasheed A, Mohsin R, Majid ZA, Rashid NM. 2017. Modelling of cadmium (II) uptake from aqueous solutions using treated rice husk: fixed–bed studies. Chem Eng Trans. 56:229–234. doi:10.3303/CET1756039.
  • Goel J, Kadirvelu K, Rajagopal C, Garg VK. 2005. Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater. 125(1–3):211–220. doi:10.1016/j.jhazmat.2005.05.032.
  • Hamdaoui O. 2006. Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. J Hazard Mater. 138(2):293–303. doi:10.1016/j.jhazmat.2006.04.061.
  • Hodaifa G, Alami SB, Ochando-Pulido JM, Víctor-Ortega MD. 2014. Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves. Ecol Eng. 73:270–275. doi:10.1016/j.ecoleng.2014.09.049.
  • Kumar S, Narayanasamy S, Venkatesh RP. 2019. Removal of Cr (VI) from synthetic solutions using water caltrop shell as a low-cost biosorbent. Sep Sci Technol. 54(17):2783–2799. doi:10.1080/01496395.2018.1560333.
  • Maheshwari U, Gupta S. 2016. Removal of Cr(VI) from wastewater using activated neem bark in a fixed-bed column: interference of other ions and kinetic modelling studies. Desal Water Treat. 57(18):8514–8525. doi:10.1080/19443.994.2015.1030709.
  • Maji SK, Pal A, Pal T, Adak A. 2007. Modeling and fixed bed column adsorption of As (III) on laterite soil. Sep Pur Technol. 56(3):284–290. doi:10.1016/j.seppur.2007.02.011.
  • Malkoc E, Nuhoglu Y. 2003. The removal of chromium(VI) from synthetic wastewater by Ulothrix zonata. Fresenius Environ Bull. 12 (4):376–381.
  • Malkoc E, Nuhoglu Y, Dundar M. 2006. Adsorption of chromium (VI) on pomace—an olive oil industry waste: batch and column studies. J Hazard Mater. 138(1):142–151. doi:10.1016/j.jhazmat.2006.05.051.
  • Markovska L, Meshko V, Noveski V. 2001. Adsorption of basic dyes in a fixed bed column. Korean J Chem Eng. 18(2):190–195. doi:10.1007/BF02698458.
  • Mitra T, Das SK. 2019. Cr (VI) removal from aqueous solution using Psidium guajava leaves as green adsorbent: column studies. Appl Water Sci. 9(7):153. doi:10.1007/s13201-019-1029-2.
  • Park D, Yun YS, Park JM. 2005. Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonia sp. Chemosphere. 60(10):1356–1364. doi:10.1016/j.chemosphere.2005.02.020.
  • Patra C, Medisetti RM, Pakshirajan K, Narayanasamy S. 2019. Assessment of raw, acid-modified and chelated biomass for sequestration of hexavalent chromium from aqueous solution using Sterculia villosa Roxb. shells. Environ Sci Pollut Res. 26(23):23625–23637. doi:10.1007/s11356-019-05582-4.
  • Pendergast MM, Hoek EM. 2011. A review of water treatment membrane nanotechnologies. Energy Environ Sci. 4(6):1946–1971. doi:10.1039/C0EE00541J.
  • Rangabhashiyam S, Suganya E, Lity AV, Selvaraju N. 2016. Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp. Res Chem Intermed. 42(2):1275–1294. doi:10.1007/s11164-015-2085-3.
  • Sharma DC, Forster CF. 1995. Column studies into the adsorption of chromium (VI) using sphagnum moss pea. Bioresour Technol. 52(3):261–267. doi:10.1016/0960-8524(95)00035-D.
  • Srivastava S, Agrawal SB, Mondal MK. 2015a. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 22(20):15386–15415. doi:10.1007/s11356-015-5278-9.
  • Srivastava S, Agrawal SB, Mondal MK. 2015b. Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecol Eng. 85:56–66. doi:10.1016/j.ecoleng.2015.10.011.
  • Srivastava S, Agrawal SB, Mondal MK. 2019. Fixed bed column adsorption of Cr (VI) from aqueous solution using nanosorbents derived from magnetite impregnated Phaseolus vulgaris husk. Environ Prog Sustainable Energy. 38(s1):S68–S76. doi:10.1002/ep.12918.
  • Suganya E, Saranya N, Patra C, Varghese LA, Selvaraju N. 2019. Biosorption potential of Gliricidia sepium leaf powder to sequester hexavalent chromium from synthetic aqueous solution. J Environ Chem Eng. 7(3):103–112. doi:10.1016/j.jece.2019.103112.
  • Sukumar C, Janaki V, Vijayaraghavan K, Kamala-Kannan S, Shanthi K. 2017. Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: fixed-bed column study. Clean Techn Environ Policy. 19(1):251–258. doi:10.1007/s10098-016-1203-2.
  • Thomas HC. 1944. Heterogeneous ion exchange in a flowing system. J Am Chem Soc. 66(10):1664–1666. doi:10.1021/ja01238a017.
  • Uddin MT, Rukanuzzaman M, Khan MMR, Islam MA. 2009. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study. J Environ Manage. 90(11):3443–3450. doi:10.1016/j.jenvman.2009.05.030.
  • UNICEF. 2015. WHO progress on sanitation and drinking water-2015 update and MDG assessment. Geneva: World Health Organization and UNICEF. https://www.who.int/water_sanitation_health/monitoring/jmp-2015-press-release/en.
  • Yoon YH, Nelson JH. 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J. 45(8):509–516. doi:10.1080/15298668491400197.
  • Zang T, Cheng Z, Lu L, Jin Y, Xu X, Ding W, Qu J. 2017. Removal of Cr (VI) by modified and immobilized Auricularia auricula spent substrate in a fixed-bed column. Ecol Eng. 99:358–365. doi:10.1016/j.ecoleng.2016.11.070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.