262
Views
6
CrossRef citations to date
0
Altmetric
Articles

The role of Fe-nano particles in scarlet sage responses to heavy metals stress

ORCID Icon

References

  • Ahmad B, Zaid A, Jaleel H, Khan MMA, Ghorbanpour M. 2019. Nanotechnology for phytoremediation of heavy metals: mechanisms of nanomaterial-mediated alleviation of toxic metals. Adv Phytonanotechnol. p. 315–327. doi:10.1016/B978-0-12-815322-2.00014-6.
  • Ali Khan AH, Butt TA, Mirza CR, Yousaf S, Nawaz I, Iqbal M. 2019. Combined application of selected heavy metals and EDTA reduced the growth of Petunia hybrid. L Sci Rep. 9:4138. doi:10.1038/s41598-019-40540-7.
  • Ali S, Rizwan M, Zaid A, Arif MS, Yasmeen T, Hussain A, Shahid MR, Bukhari SAH, Hussain S, Abbasi GH. 2018. 5-Aminolevulinic acid-induced heavy metal stress tolerance and underlying mechanisms in plants. J Plant Growth Regul. 37(4):1423–1436. doi:10.1007/s00344-018-9875-y.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Atanassova B, Zapryanova N. 2009. Influence of heavy metal stress on growth and flowering of Salvia splendens Ker. Gawl. Biotechnol. Biotec. Eq. 23(sup1):173–176. doi:10.1080/13102818.2009.10818393.
  • Badawy SH, Helal MI, Chaudri AM, Lawlor K, McGrath SP. 2002. Soli solid-phase controls lead activity in soil solution. J Environ Qual. 31(1):162–167. doi:10.2134/jeq2002.1620.
  • Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1):70–76. doi:10.1006/abio.1996.0292.
  • Bhatia A, Singh SD, Kumar A. 2015. Heavy metal contamination of soil, irrigation water and vegetables in peri urban agricultural areas and markets of Delhi. Water Environ Res. 87(11):2027–2034. doi:10.2175/106143015X14362865226833.
  • Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 91(2):179–194. doi:10.1093/aob/mcf118.
  • Bosiacki M. 2008. Accumulation of cadmium in selected species of ornamental plants. Acta Sci Pol Hortoru. 7:21–31.
  • Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci Technol. 28(1):25–30. doi:10.1016/S0023-6438(95)80008-5.
  • Cambrolle J, Garcia JL, Figueroa ME, Cantos M. 2015. Evaluating wild grapevine tolerance to copper toxicity. Chemosphere. 120:171–178. doi:10.1016/j.chemosphere.2014.06.044.
  • Caser M, D’Angiolillo F, Chitarra W, Lovisolo C, Ruffoni B, Pistelli L, Pistelli L, Scariot V. 2018. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern., to drought stress. Plant Growth Regul. 48(2):383–394. doi:10.1007/s10725-017-0349-1.
  • Cui S, Zhang T, Zhao S, Li P, Zhou Q, Zhang Q, Han Q. 2013. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil. Int J Phytoremediat. 15(4):299–306. doi:10.1080/15226514.2012.694502.
  • Dey SK, Dey J, Patra S, Pothal D. 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol. 19(1):53–60. doi:10.1590/S1677-04202007000100006.
  • Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. 2018. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav. 13(8):1–8 e1460048. doi:10.1080/15592324.2018.1460048.
  • Freed RD, Scott E. 1989. MSTAT–C: a software package for the design. Manage Analy Agronomic Experi. Michigan (USA): Michigan State University.
  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M. 2011. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol. 155(4):1893–1907. doi:10.1104/pp.110.169730.
  • Gamalero E, Lingua G, Berta G, Glick BR. 2009. Beneficial role of plantgrowth promoting bacteria and arbuscular mycorrhizal fungi onplant responses to heavy metal stress. Can. J. Microbiol. 55(5):501–514. doi:10.1139/W09-010.
  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res. 22(2):1534–1544. doi:10.1007/s11356-014-3431-5.
  • Harikumar PS, Lamya TV, Shalna T. 2019. Enhanced phytoremediation efficiency of lead contaminated soil by zero valent nano iron. Int J Innov Res Sci Eng Technol. 2(2):44–50. doi:10.21172/ijiet.122.07.
  • Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. California Agricultural Experimental Station, Circular No. 347. Berkeley: University of California. p. 1–32.
  • Iannone MF, Groppa MD, Sousa ME, Raap M, Benavides MP. 2016. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exper Bot. 131:77–88. doi:10.1016/j.envexpbot.2016.07.004.
  • Jalali M, Ghanati F, Modarres-Sanavi AM. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci. 67(6):621–628. doi:10.1071/CP15271.
  • Juknys R, Vitkauskaitė G, Račaitė M, Venclovienė J. 2012. The impacts of heavy metals on oxidative stress and growth of spring barley. Cent Eur J Biol. 7(2):299–306. doi:10.2478/s11535-012-0012-9.
  • Keller AA, Garner K, Miller RJ, Lenihan HS. 2012. Toxicity of nano-zero valent iron to freshwater and marine organisms. PLOS One. 7(8):e43983. doi:10.1371/journal.pone.0043983.
  • Khan AH, Tanveer S, Anees M, Muhammad YS, Iqbal M, Yousaf S. 2016. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J Environ Manag. 176:54–60. doi:10.1016/j.jenvman.2016.03.040.
  • Khosropour E, Attarod P, Shirvany A, Pypker TG, Bayramzadeh V, Hakimi L, Moeinaddini M. 2019. Response of Platanus orientalis leaves to urban pollution by heavy metals. J for Res. 30(4):1437–1445. doi:10.1007/s11676-018-0692-8.
  • Konate A, He X, Rui YK, Zhang ZY. 2017. Magnetite (Fe3O4) nanoparticles alleviate growth inhibition and oxidative stress caused by heavy metals in young seedlings of cucumber (Cucumis Sativus L). ITM Web Conf. 12:03034. doi:10.1051/itmconf/20171203034.
  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 9(5):790. doi:10.3390/su9050790.
  • Kupper H, Andresen E. 2016. Mechanisms of metal toxicity in plants. Metallomics. 8(3):269–285. doi:10.1039/D0MT90007A.
  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H. 2007. Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res. 119(1):68–76. doi:10.1007/s12011-007-0047-3.
  • Lešková A, Giehl RFH, Hartmann A, Fargašová A, von Wirén N. 2017. Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol. 174(3):1648–1668. doi:10.1104/pp.16.01916.
  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z. 2006. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere. 62(4):565–572. doi:10.1016/j.chemosphere.2005.06.029.
  • Liu JN, Zhou QX, Wang XF, Zhang QR, Sun T. 2006. Potential of ornamental plant resources applied to contaminated soil remediation. In: Teixeira da Silva JA, editor. Floriculture. Ornamental and plant biotechnology: advances and topical issues. London: Global Science Books. p. 245–252.
  • Liu YJ, Zhu YG, Ding H. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a Metal Accumulation Index (MAI). Environ Pollut. 145(2):387–390. doi:10.1016/j.envpol.2006.05.010.
  • Marmiroli N, Maestri E. 2008. Health implications of trace elements in the environment and the food chain. In: Prasad MNV, editor. Trace elements as contaminants and nutrients. New Jersey: John Willy and Sons. p. 23–53.
  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N. 2007. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol. 143(4):1761–1773. doi:10.1104/pp.106.094474.
  • Mingyu S, Fashui H, Chao L, Xiao W, Xiaoqing L, Liang C, Fengqing G, Fan Y, Zhongrui L. 2007. Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res. 118(2):120–130. doi:10.1007/s12011-007-0006-z.
  • Moharram FA, Marzouk MS, El-Shenawy SM, Gaara AH, El-Kady WM. 2012. Polyphenolic profile and biological activity of Salvia splendens leaves. J Pharm Pharmacol. 64(11):1678–1687. doi:10.1111/j.2042-7158.2012.01544.x.
  • Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZ, Zia-Ul-Haq M. 2015. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res. 48(1):11. doi:10.1186/s40659-015-0001-3.
  • Nagajyoti PC, Lee KD, Sreekanth T. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8(3):199–216. doi:10.1007/s10311-010-0297-8.
  • Nasiri J, Gholami A, Panahpour E. 2013. Removal of cadmium from soil resources using stabilized zero-valent iron nanoparticles. J Civ Eng Urban. 3:338–341.
  • Ozden M, Demirel U, Kahraman A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hortic. 119(2):163–168. doi:10.1016/j.scienta.2008.07.031.
  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A. 2013. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol. 47(22):13122–13131. doi:10.1021/es402659t.
  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A. 2014. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem. 62(35):8777–8785. doi:10.1021/jf502716c.
  • Qi M, Liu Y, Li T. 2013. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res. 156(1–3):323–328. doi:10.1007/s12011-013-9833-2.
  • Rahmatizadeh R, Arvin SMJ, Jamei R, Mozaffari H, Reza Nejhad F. 2019. Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress. J Plant Interact. 14(1):474–481. doi:10.1080/17429145.2019.1626922.
  • Rizvi A, Khan MS. 2017. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere. 185:942–952. doi:10.1016/j.chemosphere.2017.07.088.
  • Saradhi PP, Mohanty P. 1993. Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil. 155:497–500. doi:10.1007/BF00025092.
  • Sarrou E, Chatzopoulou P, Dimassi-Theriou K, Therios I, Koularmani A. 2015. Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. J Essent Oil Res. 27(6):487–496. doi:10.1080/10412905.2015.1064485.
  • Scalbert A, Monties B, Janin G. 1989. Tannins in wood: comparison of different estimation methods. J Agric Food Chem. 37(5):1324–1329. doi:10.1021/jf00089a026.
  • Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wiren N. 2006. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem. 281(35):25532–25540. doi:10.1074/jbc.M601062200.
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 232:1–44. doi:10.1007/978-3-319-06746-9_1.
  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J. 2016. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. 6(7):983–990. doi:10.1007/s13204-015-0510-y.
  • Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B. 2018. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (glycine max L.) seed. An Acad Bras Ciênc. 90(1):485–494. doi:10.1590/0001-3765201820160251.
  • Singh BK, Walker A. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev. 30(3):428–471. doi:10.1111/j.1574-6976.2006.00018.x.
  • Singh N, Ma LQ, Vu JC, Raj A. 2009. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ Pollut. 157(8–9):2300–2305. doi:10.1016/j.envpol.2009.03.036.
  • Souri Z, Karimi N, Sarmadi M, Rostami E. 2017. Salicylic acid nanoparticle (SANPs) improves growth and phytoremediation efficiency of Isatis cappadocica Desv. under arsenic stress. IET Nanobiotechnol. 11(6):650–655. doi:10.1049/iet-nbt.2016.0202.
  • Srivastav A, Yadav KK, Yadav S, Gupta N, Singh JK, Katiyar R, Kumar V. 2018. Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari A, Gill S, Gill R, Lanza G, Newman L, editors. Phytoremediation. Cham (Switzerland): Springer Nature Switzerland. p. 383–401.
  • Straalen N, Donker M. 1994. Heavy metals adaptation in terrestial arthropods—Physiological and genetic aspects. Proc Exp Appl Entomol Neth Entomol Soc. 5:3–17.
  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. 2015. Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N, editors. Nanotechnol food agricul. Cham: Springer. p. 69–80.
  • Sun S, Li M, Zuo J, Jiang W, Liu D. 2015. Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirb Agric. 102(2):193–200. doi:10.13080/z-a.2015.102.025.
  • Świętek M, Lu Y-C, Konefał R, Ferreira LP, Cruz MM, Ma Y-H, Horák D. 2019. Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein J Nanotechnol. 10:1073–1088. doi:10.3762/bjnano.10.108.
  • Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL. 2014. Exposure studies of coreeshell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater. 267:255–263. doi:10.1016/j.jhazmat.2013.11.067.
  • Trujillo-Reyes J, Peralta-Videa J, Gardea-Torresdey J. 2014. Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater. 280:487–503. doi:10.1016/j.jhazmat.2014.08.029.
  • Velikova V, Loreto F. 2005. On the relationship between isoprene emission and thermo tolerance in Phragmites ausrralis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ. 28(3):318–327. doi:10.1111/j.1365-3040.2004.01314.x.
  • Wang F, Zheng B, Sun Z, Zhu C. 2009. Relationship between proline and Hg2+ − induced oxidative stress in tolerant rice mutant. Arch Environ Con Tox. 56:723–731. doi:10.1007/s00244-008-9226-2.
  • Wang M, Chen L, Chen S, Ma Y. 2012. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf. 79:48–54. doi:10.1016/j.ecoenv.2011.11.044.
  • Wang M, Liu X, Hu J, Li J, Huang J. 2015. Nano-ferric oxide promotes watermelon growth. JBNB. 06(03):160–167. doi:10.4236/jbnb.2015.63016.
  • Wang S, Li R, Zhang Z, Feng J, Shen F. 2014. Assessment of the heavy metal pollution and potential ecological hazardous in agricultural soils and crops of Tongguan, Shaanxi Province. J Environ Sci China. 34:2313–2320.
  • Wang XF, Zhou QX. 2005. Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere. 60(1):16–21. doi:10.1016/j.chemosphere.2004.12.031.
  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA. 2018. Engineering plants for heavy metal stress tolerance. Rend Fis Acc Lincei. 29(3):709–723. doi:10.1007/s12210-018-0702-y.
  • Wan J, Zeng G, Huang D, Hu L, Xu P, Huang C, Deng R, Xue W, Lai C, Zhou C, et al. 2018. Rhamnolipid stabilized nano-chlorapatite: synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment. J Hazard Mater. 343:332–339. doi:10.1016/j.jhazmat.2017.09.053.
  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, et al. 2012. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol. 158(2):790–800. doi:10.1104/pp.111.190983.
  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, et al. 2012. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ. 424:1–10. doi:10.1016/j.scitotenv.2012.02.023.
  • Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX. 2012. Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng Sci. 203:423–431. doi:10.1016/j.cej.2012.07.048.
  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res. 119(1):77–88. doi:10.1007/s12011-007-0046-4.
  • Yang J, Cao W, Rui Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact. 12(1):158–169. 10.1080/17429145.2017.1310944
  • Yang Z, Fang Z, Zheng L, Cheng W, Tsang PE, Fang J, Zhao D. 2016. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol Environ Saf. 132:224–230. doi:10.1016/j.ecoenv.2016.06.008.
  • Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN. 2018. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 8(1):3228. doi:10.1038/s41598-017-18055-w.
  • Zaid A, Mohammad F. 2018. Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul. 37(4):1331–1348. doi:10.1007/s00344-018-9854-3.
  • Zaid A, Mohammad F, Wani SH, Siddique K. 2019a. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotox Environ Safe. 180:575–587. doi:10.1016/j.ecoenv.2019.05.042.
  • Zaid A, Wani SH, Masoodi KZ. 2019b. Role of Nitrogen and Sulfur in Mitigating Cadmium induced Metabolism. JPSR. 35(1):121–141. doi:10.32381/JPSR.2019.35.01.11.
  • Zaid A, Mohammad F, Fariduddin Q. 2020. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biol Plants. 26(1):25–39. doi:10.1007/s12298-019-00715-y.
  • Zhang FQ, Wang YS, Lou ZP, Dong JD. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere. 67(1):44–50. doi:10.1016/j.chemosphere.2006.10.007.
  • Zhang H, Jiang Y, He Z, Ma M. 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 162(9):977–984. doi:10.1016/j.jplph.2004.10.001.
  • Zhang P, Ma Y, Zhang Z, He X, Li Y, Zhang J, Zheng L, Zhao Y. 2015. Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology. 9(1):1–8. doi:10.3109/17435390.2013.855829.
  • Zhao S, Liu Q, Qi Y, Duo L. 2010. Responses of root growth and protective enzymes to copper stress in turfgrass. Acta Biol Crac Ser Bot. 52:7–11. doi:10.2478/v10182-010-0017-5.
  • Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L. 2019. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ. 662:414–421. doi:10.1016/j.scitotenv.2019.01.234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.