317
Views
11
CrossRef citations to date
0
Altmetric
Articles

Using bioenergy crop cassava (Manihot esculenta) for reclamation of heavily metal-contaminated land

, , &

References

  • Chen J, Dong J, Chang J, Guo T, Yang Q, Jia W, Shen S. 2018. Characterization of an Hg(II)-volatilizing Pseudomonas sp. strain, DC-B1, and its potential for soil remediation when combined with biochar amendment. Ecotoxicol Environ Saf. 163:172–179. doi:10.1016/j.ecoenv.2018.07.071.
  • Cheng SF, Huang CY, Chen KL, Lin SC, Lin YC. 2015a. Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes. Environ Monit Assess. 187(3). doi:10.1007/s10661-014-4247-y.
  • Cheng SF, Huang CY, Lin SC, Chen KL, Lin YC. 2015b. Feasibility of using peanut (Arachis hypogaea L.) for phytoattenuation on lead-contaminated agricultural land-an in situ study. Agr Ecosyst Environ. 202:25–30. doi:10.1016/j.agee.2014.12.018.
  • Dai D, Hu ZY, Pu GQ, Li H, Wang CT. 2006. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers Manage. 47(13–14):1686–1699. doi:10.1016/j.enconman.2005.10.019.
  • El-Sharkawy MA. 2003. Cassava biology and physiology. Plant Mol Biol. 53(5):621–641. doi:10.1023/B:PLAN.0000019109.01740.c6.
  • Environmental Protection Ministry, PR China, 2015. http://www.bbc.com/news/world-asia-china-27076645
  • Fassler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R. 2010. Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agr Ecosyst Environ. 136(1–2):49–58. doi:10.1016/j.agee.2009.11.007.
  • Guo Z, Gao Y, Cao X, Jiang W, Liu X, Liu Q, Chen Z, Zhou W, Cui J, Wang Q. 2019. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). Int J Phytoremediat. 21(2):1–11.
  • Jiao J, Li J, Bai Y. 2018. Ethanol as a vehicle fuel in China: a review from the perspectives of raw material resource, vehicle, and infrastructure. J Clean Prod. 180:832–845. doi:10.1016/j.jclepro.2018.01.141.
  • John R, Ahmad P, Gadgil K, Sharma S. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod. 3(3):65–76.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi:10.1016/j.gexplo.2016.11.021.
  • Kocoń A, Jurga B. 2017. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ Sci Pollut Res Int. 24(5):4990–5000. doi:10.1007/s11356-016-8241-5.
  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M. 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv. 27(6):799–810. doi:10.1016/j.biotechadv.2009.06.003.
  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 468–469:843–853. doi:10.1016/j.scitotenv.2013.08.090.
  • Lu RK. 1999. Agricultural soil analysis. Beijing: China Agricultural Science Press. p. 474–492. (In Chinese)
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf. 126:111–121. doi:10.1016/j.ecoenv.2015.12.023.
  • McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14(3):277–282. doi:10.1016/S0958-1669(03)00060-0.
  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack F. 2010. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere. 78(1):35–41. doi:10.1016/j.chemosphere.2009.08.015.
  • Pogrzeba M, Krzyzak J, Rusinowski S, Hebner A, Kopielski K, Werle S, Ratman-Klosinska I. 2018a. Possibility of using energy crops for phytoremediation of heavy metals contaminated land-a three-year experience. In Renewable energy sources: engineering, technology, innovation. Springer proceedings in energy. Cham: Springer. p. 33–45.
  • Pogrzeba M, Krzyżak J, Rusinowski S, Werle S, Hebner A, Milandru A. 2018b. Case study on phytoremediation driven energy crop production using Sida hermaphrodita. Int J Phytoremediation. 20(12):1194–1204. doi:10.1080/15226514.2017.1375897.
  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218(2):407–411. doi:10.1111/nph.14907.
  • Silalertruksa T, Gheewala SH. 2009. Environmental sustainability assessment of bio-ethanol production in Thailand. Energy. 34(11):1933–1946. doi:10.1016/j.energy.2009.08.002.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Basel: Springer. p. 133–164.
  • Tessier A, Campbell PG, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 51(7):844–851. doi:10.1021/ac50043a017.
  • Tian YS, Zhao LX, Meng HB, Sun LY, Yan JY. 2009. Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl Energ. 86:S77–S85. doi:10.1016/j.apenergy.2009.06.007.
  • Van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, et al. 2015. Agromining: farming for metals in the future? Environ Sci Technol. 49(8):4773–4780. doi:10.1021/es506031u.
  • Vintila T, Negrea A, Barbu H, Sumalan R, Kovacs K. 2016. Metal distribution in the process of lignocellulosic ethanol production from heavy metal contaminated sorghum biomass. J Chem Technol Biotechnol. 91(6):1607–1614. doi:10.1002/jctb.4902.
  • Wang J, Liu H, Li J, He S, Wang B. 2004. Study on Efffct of heavy metal ions to the recycling of waste liquid from alcoholic fermentation of sugarcane molasses. Liquor Making. 31(3):22–25. (in Chinese)
  • Wang YX, Specht A, Horst WJ. 2011. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol. 189(2):428–437. doi:10.1111/j.1469-8137.2010.03489.x.
  • Wei ZB, Guo XF, Wu QT, Long XX, Penn CJ. 2011. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. Int J Phytoremediation. 13(7):717–729. doi:10.1080/15226514.2010.525554.
  • Yu SR, Tao J. 2009. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context. Energy. 34(1):22–31. doi:10.1016/j.energy.2008.10.004.
  • Zhang C, Han WJ, Jing XD, Pu GQ, Wang CT. 2003. Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sust Energ Rev. 7(4):353–366. doi:10.1016/S1364-0321(03)00057-1.
  • Zhang TT, Xie XM, Huang Z. 2017. The policy recommendations on cassava ethanol in China: analyzed from the perspective of life cycle “2E & W.” Resour Conserv Recy. 126:12–24. doi:10.1016/j.resconrec.2017.07.008.
  • Zhang X, Zhu YG, Zhang YB, Liu YX, Liu SC, Guo JW, Li RD, Wu SL, Chen BD. 2014. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments. J Environ Sci. 26(5):1080–1089. doi:10.1016/S1001-0742(13)60543-4.
  • Zhou JM, Dang Z, Cai MF, Liu CQ. 2007. Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China. Pedosphere. 17(5):588–594. doi:10.1016/S1002-0160(07)60069-1.
  • Zhuang P, Zou B, Li NY, Li ZA. 2009. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health. 31(6):707–715. doi:10.1007/s10653-009-9248-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.