291
Views
14
CrossRef citations to date
0
Altmetric
Articles

Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge

ORCID Icon, &

References

  • Almasi A, Mohammadi M, Mosavi SA, Eghbali S. 2019. Phytoremediation potential of sewage sludge using native plants: Gossypium hirsutum L. and Solanum lycopersicum L. Int J Environ Sci Technol. 16(10):6237–6246. doi:10.1007/s13762-018-2030-2.
  • Amdoun R, Benyoussef EH, Benamghar A, Khelifi L. 2019. Prediction of hyoscyamine content in Datura stramonium L. hairy roots using different modeling approaches: Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Kriging. Biochem Eng J. 144:8–17. doi:10.1016/j.bej.2019.01.002].
  • Anning AK, Akoto R. 2018. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol Environ Saf. 148:97–104. doi:10.1016/j.ecoenv.2017.10.014.
  • Bagheri M, Al-Jabery K, Wunsch D, Burken JG. 2019. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Sci Total Environ. 651(Pt 1):561–569. doi:10.1016/j.scitotenv.2018.09.048.
  • Bagheri M, Al-Jabery K, Wunsch D, Burken JG. 2020. Examining plant uptake and translocation of emerging contaminants using machine learning: implications to food security. Sci Total Environ. 698:133999. doi:10.1016/j.scitotenv.2019.133999.
  • Balasubramani K, Sivarajasekar N, Naushad M. 2020. Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. J Mol Liq. 301. doi:10.1016/j.molliq.2019.:.112426.
  • Burges A, Alkorta I, Epelde L, Garbisu C. 2018. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation. 20(4):384–397. doi:10.1080/15226514.2017.1365340.
  • Cao RS, Fan MY, Hu JW, Ruan WQ, Xiong KN, Wei XH. 2017. Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm. Materials. 10(11):1279–1217. doi:10.3390/ma10111279.
  • Chen S, Sun S, Zhao C, Zang M, Wang Q, Liu Q, Li L. 2018. Optimization of biodegradation of polycyclic aromatic sulfur heterocycles in soil using response surface methodology. Pet Sci Technol. 36(22):1883–1890. doi:10.1080/10916466.2018.1517165.
  • Darajeh N, Idris A, Masoumi HRF, Nourani A, Truong P, Rezania S. 2017. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks. Int J Phytoremediation. 19(5):413–424. doi:10.1080/15226514.2016.1244159.
  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. 2018. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett. 16(4):1169–1192. doi:10.1007/s10311-018-0741-8.
  • Eid EM, Alrumman SA, Farahat EA, El-Bebany AF. 2018. Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environ Monit Assess. 190(9) doi:10.1007/s10661-018-6885-y.
  • Fan MY, Hu JW, Cao RS, Ruan WQ, Wei XH. 2018. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere. 200:330–361. doi:10.1016/j.chemosphere.2018.02.111.
  • Fan MY, Hu JW, Cao RS, Xiong KN, Wei XH. 2017. Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Sci Rep. 7(1):18040–18054. doi:10.1038/s41598-017-18223-y.
  • Gautam M, Agrawal M. 2017. Phytoremediation of metals using vetiver Chrysopogon zizanioides (L.) grown under different levels of red mud in sludge amended soil. J Geochem Explor. 182(B):218–227. doi:10.1016/j.gexplo.2017.03.003.
  • Hamid HA, Jenidi Y, Thielemans W, Somerfield C, Gomes RL. 2016. Predicting the capability of carboxylated cellulose nanowhiskers for the remediation of copper from water using response surface methodology (RSM) and artificial neural network (ANN) models. Ind Crops Prod. 93:108–120. doi:10.1016/j.indcrop.2016.05.035.
  • Janani KSN, Muthusaravanan S, Ram K, Prakashmaran J, Sivamani S, Nirajan D, Tasrin S, Selvaraju N. 2019. Optimization of EDTA enriched phytoaccumulation of zinc by Ophiopogon japonicus: Comparison of Response Surface, Artificial Neural Network and Random Forest models. Bioresour Technol Rep. 7:100265. doi:10.1016/j.biteb.2019.100265.
  • Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F. 2019. Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf. 181:508–517. doi:10.1016/j.ecoenv.2019.06.025.
  • Jaskulak M, Grobelak A, Vandenbulcke F. 2020. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects. Chemosphere. 249:126196 doi:10.1016/j.chemosphere.2020.126196.
  • Kausar A, Bhatti HN, Iqbal M, Ashraf A. 2017. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology. Water Sci Technol. 76(5-6):1035–1043. doi:10.2166/wst.2017.2
  • Kumar V, Singh J, Kumar P. 2019a. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Environ Sci Pollut Res. 26(14):14400–14413. doi:10.1007/s11356-019-04766-2.
  • Kumar V, Thakur RK, Kumar P. 2019b. Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Sci Hortic. 257:108682. doi:10.1016/j.scienta.2019.108682.
  • Kuramshina ZM, Smirnova YV, Khairullin RM. 2018. Cadmium and nickel toxicity for Sinapis alba plants inoculated with endophytic strains of Bacillus subtilis. Russ J Plant Physiol. 65(2):269–277. doi:10.1134/S1021443718010077.
  • Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M. 2016. Interaction between cadmium stress and sulphur nutrition level on macronutrient status of Sinapis alba L. Water Air Soil Pollut. 227(9):355 doi:10.1007/s11270-016-3059-9.
  • Mayo AW, Hanai EE. 2017. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Physics Chem Earth Parts A/B/C. 100:170–180. doi:10.1016/j.pce.2016.10.016.
  • Movafeghi A, Khataee AR, Moradi Z, Vafaei F. 2016. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: an artificial neural networks modeling. Int J Phytoremediation. 18(4):337–347. doi:10.1080/15226514.2015.1109588.
  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett. 16(4):1339–1359. doi:10.1007/s10311-018-0762-3.
  • Muthusaravanan S. 2020. Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities. In: Naushad M., Lichtfouse E, editors. Green materials for wastewater treatment. Environmental chemistry for a sustainable world. Vol. 38. Cham: Springer.
  • Nissim WG, Cincinelli A, Martellini T, Alvisi L, Palm E, Mancuso S, Azzarello E. 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 164:356–366. doi:10.1016/j.envres.2018.03.009.
  • Pulford ID, Riddell-Black D, Stewart C. 2002. Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytorem. 4(1):59–72. doi:10.1080/15226510208500073.
  • Roohi R, Jafari M, Jahantab E, Aman MS, Moameri M, Zare S. 2020. Application of artificial neural network model for the identification the effect of municipal waste compost and biochar on phytoremediation of contaminated soils. J Geochem Explor. 208:106399. doi:10.1016/j.gexplo.2019.106399.
  • Rossi L, Bagheri M, Zhang W, Chen Z, Burken JG, Ma X. 2019. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environ Pollut. 246:381–389. doi:10.1016/j.envpol.2018.12.029.
  • Sanusi SNA, Halmi MIE, Abdullah SRS, Hassan HA, Hamzah FM, Idris M. 2016. Comparative process optimization of pilot-scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using response surface methodology (RSM) and artificial neural networks (ANNs). Ecol Eng. 97:524–534. doi:10.1016/j.ecoleng.2016.10.044.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Selamat SN, Halmi M, Abdullah SRS, Idris M, Hasan HA, Anuar N. 2018. Optimization of lead (Pb) bioaccumulation in Melastoma malabathricum L. by response surface methodology (RSM). Rend Fis Acc Lincei. 29(1):43–51. doi:10.1007/s12210-017-0656-5.
  • Šereš Z, Maravić N, Takači A, Nikolić I, Šoronja-Simović D, Jokić A, Hodur C. 2016. Treatment of vegetable oil refinery wastewater using alumina ceramic membrane: optimization using response surface methodology. J Cleaner Prod. 112(4):3132–3137. doi:10.1016/j.jclepro.2015.10.070.
  • Sharavanan VJ, Sivaramakrishnan M, Sivarajasekar N, Senthilrani N, Kothandan R, Dhakal N, Sivamani S, Show PL, Awual MR, Naushad M. 2020. Pollutants inducing epigenetic changes and diseases. Environ Chem Lett. 18(2):325–343. 10.1007/s10311-019-00944-3.
  • Sivarajasekar N. 2019. Recent Updates on Heavy Metal Remediation Using Date Stones (Phoenix dactylifera L.) – Date Fruit Processing Industry Waste. In: Naushad M., Lichtfouse E, editors. Sustainable agriculture reviews. Vol. 34. Cham: Springer.
  • Souza TD, Borges A, Matos AT, Veloso RW, Braga AF. 2018. Optimization of arsenic phytoremediation using Eichhornia crassipes. Int J Phytoremediation. 20(11):1129–1135. doi:10.1080/15226514.2018.1460308.
  • Sumner ME, Miller WP. 1996. Cation exchange capacity, and exchange coefficients. In: Sparks DL, editor. Methods of soil analysis. Part 2: Chemical properties. 3rd ed. Madison, WI: ASA, SSSA, CSSA.
  • Titah HS, Halmi M, Abdullah SRS, Hasan HA, Idris M, Anuar N. 2018. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN)). Int J Phytoremediation. 20(7):721–729. doi:10.1080/15226514.2017.1413337.
  • Yang Y, Chen W, Wang M, Li Y, Peng C. 2017. Evaluating the potential health risk of toxic trace elements in vegetables: accounting for variations in soil factors. Sci Total Environ. 584–585:942–949. doi:10.1016/j.scitotenv.2017.01.143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.