291
Views
6
CrossRef citations to date
0
Altmetric
Review

The use of willow microcuttings for phytoremediation in a copper, zinc and lead contaminated field trial in Shanghai, China

, , &

References

  • Adler A, Verwijst T, Aronsson P. 2005. Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy. 29(2):102–113. doi:10.1016/j.biombioe.2005.04.003.
  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J. 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation – a review. Earth Sci Rev. 171:621–645. doi:10.1016/j.earscirev.2017.06.005.
  • Beauchamp S, Jerbi A, Frenette-Dussault C, Pitre FE, Labrecque M. 2018. Does the origin of cuttings influence yield and phytoextraction potential of willow in a contaminated soil? Ecol Eng. 111:125–133. doi:10.1016/j.ecoleng.2017.11.019.
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. 2011. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023.
  • Bissonnette L, St-Arnaud M, Labrecque M. 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil. 332(1–2):55–67. doi:10.1007/s11104-009-0273-x.
  • Carpenter LT, Pezeshki SR, Shields FD. 2008. Responses of nonstructural carbohydrates to shoot removal and soil moisture treatments in Salix nigra. Trees. 22(5):737–748. doi:10.1007/s00468-008-0234-7.
  • Cloutier-Hurteau B, Turmel MC, Mercier C, Courchesne F. 2014. The sequestration of trace elements by willow (Salix purpurea)-which soil properties favor uptake and accumulation? Environ Sci Pollut Res Int. 21(6):4759–4771. doi:10.1007/s11356-013-2450-y.
  • Courchesne F, Turmel MC, Cloutier-Hurteau B, Constantineau S, Munro L, Labrecque M. 2017. Phytoextraction of soil trace elements by willow during a phytoremediation trial in southern Québec, Canada. Int J Phytoremediation. 19(6):545–554. doi:10.1080/15226514.2016.1267700.
  • Dos Santos Utmazian MN, Wenzel WW. 2007. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J Plant Nutr Soil Sci. 170 (2):265–272. doi:10.1002/jpln.200622073.
  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW. 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut. 148 (1):155–165. doi:10.1016/j.envpol.2006.10.045.
  • Frenette-Dussault C, Benoist P, Kadri H, Pitre FE, Labrecque M. 2019. Rapid production of biomass using a novel micro-cutting-based field planting technology. Ecol Eng. 126:37–42. doi:10.1016/j.ecoleng.2018.10.025.
  • Guidi W, Pitre FE, Labrecque M. 2013. Short-rotation coppice of willows for the production of biomass in Eastern Canada. In: Matovic MD, editors. Biomass now - sustainable growth and use. In Tech Open Science. Chapter 17. p. 421–448.
  • Hangs RD, Schoenau JJ, Van Rees KCJ, Steppuhn H. 2011. Examining the salt tolerance of willow (Salix spp.) bioenergy species for use on salt-affected agricultural lands. Can J Plant Sci. 91(3):509–517. doi:10.4141/cjps10135.
  • Jerbi A, Guidi Nissim W, Fluet R, Labrecque M. 2015. Willow root development and morphology changes under different irrigation and fertilization regimes in a vegetation filter. Bioenerg Res. 8(2):775–787. doi:10.1007/s12155-014-9550-5.
  • Jung MC. 2008. Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors (Basel)). 8(4):2413–2423. edoi:10.3390/s8042413.
  • Kabata-Pendias A. 2001. Trace elements in soils and plants. Bocca Raton (FL): CRC Press. p. 413.
  • Kuzovkina YA, Quigley MF. 2005. Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut. 162(1–4):183–204. doi:10.1007/s11270-005-6272-5.
  • Kuzovkina YA, Volk TA. 2009. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng. 35(8):1178–1189. doi:10.1016/j.ecoleng.2009.03.010.
  • Liang J, Fang HL, Zhang TL, Wang XX, Liu YD. 2017. Heavy metals in leaves of twelve plant species from seven different areas in Shanghai, China. Urban For For Greening. 27:390–398. doi:10.1016/j.ufug.2017.03.006.
  • Marmiroli N, Marmiroli M, Maestri E. 2006. Phytoremediation and phytotechnologies: a review for the present and the future. In: Twardowska I, Allen HE, Häggblom MM; Stefaniak S, editors. Soil and water pollution monitoring, protection and remediation. Dordrecht: Springer. p. 3–23.
  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD. 2007. Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil. 290(1-2):157–172. doi:10.1007/s11104-006-9149-5.
  • Pacaldo R, Volk T, Briggs R. 2013. Greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenerg Res. 6(1):252–262. doi:10.1007/s12155-012-9250-y.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int. 29(4):529–540. doi:10.1016/S0160-4120(02)00152-6.
  • Rafay M, Abdullah M, Hussain T, Ruby T, Akhtar S, Fatima I. 2015. Germination percentage and growing behaviour of Salix tetrasperma (Willow) as affected by size of branch cutting and low polythene tunnel. J Biodivers Environ Sci. 6(4):318–325.
  • Rosselli W, Keller C, Boschi K. 2003. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil. 256(2):265–272. doi:10.1023/A:1026100707797.
  • Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Châteauneuf G, Sura C, Gallipeau C, et al. 2005. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil. 272(1–2):277–290., doi:10.1007/s11104-004-5295-9.
  • Rytter R, Hansson A. 1996. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L. plantation. Biomass Bioenergy. 11(2–3):129–137. doi:10.1016/0961-9534(96)00023-2.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49:643–668. doi:10.1146/annurev.arplant.49.1.643.
  • SAS. 2003. Statistical analysis system. SAS release 9.1 for Windows. Cary (NC): SAS Institute Inc.
  • Shang KK, Hu Y, Vincent G, Labrecque M. 2020. Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. Int J Phytoremediation. 22(1):10–19. doi:10.1080/15226514.2019.1633998.
  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J. 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut. 156(2):251–260. doi:10.1016/j.envpol.2008.02.027.
  • Tian ZH, Song K, Da LJ. 2015. Distribution pattern and traits of weed communities along an urban-rural gradient under rapid urbanization in Shanghai, China. Weed Biol Manag. 15(1):27–41. doi:10.1111/wbm.12062.
  • Vandecasteele B, Quataert P, Genouw G, Lettens S, Tack FM. 2009. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Sci Total Environ. 407(20):5289–5297. doi:10.1016/j.scitotenv.2009.06.022.
  • Vandecasteele B, Quataert P, Piesschaert F, Lettens S, De Vos B, Du Laing G. 2015. Translocation of Cd and Mn from bark to leaves in willows on contaminated sediments: delayed budburst is related to high Mn concentrations. Land. 4(2):255–280. doi:10.3390/land4020255.
  • Vincent G, Shang K, Zhang G, Labrecque M. 2018. Preliminary results of the tolerance to inorganic contaminants and phytoextraction potential of twelve ornamental shrubs tested on an experimental contaminated site. iForest. 11(3):442–448. doi:10.3832/ifor2716-011.
  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 10 (3):268–292. doi:10.4067/S0718-95162010000100005.
  • Wang Y. 2017. Illustrated flora of Shanghai: trees and shrubs. Shanghai, China: China Scientific Book Services (In Chinese). p. 413.
  • Wei B, Yang L. 2010. A review of heavy metal contamination in urban soils dusts and agricultural soils from China. Microchem J. 94(2):99–107. doi:10.1016/j.microc.2009.09.014.
  • Welc M, Lundkvist A, Verwijst T. 2017. Effects of cutting phenology (non-dormant versus dormant) on early growth performance of three willow clones grown under different weed treatments and planting dates. Bioenerg Res. 10(4):1094–1104. doi:10.1007/s12155-017-9871-2.
  • Wu HB, Fang HL, Peng HL, Liang J, Cai YP, Hao GJ. 2012. Soil physical properties analysis of the typical newly established green belt of Shanghai Chenshan Botanical Garden. J Soil and Water Conserv. 26(6):85–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.