381
Views
12
CrossRef citations to date
0
Altmetric
Articles

Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina

, , &

References

  • Abdel-Fattah GM, Rabie GH, Lamis DS, Rabab AM. 2016. The impact of the arbuscular mycorrhizal fungi on growth and physiological parameters of cowpea plants grown under salt stress conditions. Int J Appl Sci Biotechnol. 4(3):372–379. doi:10.3126/ijasbt.v4i3.15775.
  • Abeer H, Abd_Allah EF, Alqarawi AA, Egamberdieva D. 2015. Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legum Res – An Int. 38(5):579–588. doi:10.18805/lr.v38i5.5933.
  • Ahsan N, Lee D-G, Kim K-H, Alam I, Lee S-H, Lee K-W, Lee H, Lee B-H. 2010. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere. 78(3):224–231. doi:10.1016/j.chemosphere.2009.11.004.
  • Anawar HM, Rengel Z, Damon P, Tibbett M. 2018. Arsenic-phosphorus interactions in the soil-plant-microbe system: dynamics of uptake, suppression and toxicity to plants. Environ Pollut. 233:1003–1012. doi:10.1016/j.envpol.2017.09.098.
  • Baker A. 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr. 3(1–4):643–654. doi:10.1080/01904168109362867.
  • Bicalho EM, Gomes MP, Rodrigues-Junior AG, Oliveira TGS, de Almeida Gonçalves C, Fonseca MB, Garcia QS. 2017. Integrative effects of zinc and temperature on germination in Dimorphandra wilsonii rizz.: implications of climate changes. Environ Toxicol Chem. 36 (8):2036–2037. doi:10.1002/etc.3729.
  • Bowles TM, Jackson LE, Cavagnaro TR. 2018. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob Change Biol. 24(1):e171–e182. doi:10.1111/gcb.13884..
  • Chen B, Xiao X, Zhu Y-G, Smith FA, Xie, ZM, Smith SE. 2007. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ. 379(2–3):226–234. doi:10.1016/j.scitotenv.2006.07.038.
  • Christophersen HM, Smith FA, Smith SE. 2009. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol. 184(4):962–974. doi:10.1111/j.1469-8137.2009.03009.x.
  • Das J, Sarkar P. 2018. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ. 624:1106–1118. doi:10.1016/j.scitotenv.2017.12.157.
  • Diwan H, Ahmad A, Iqbal M. 2010. Uptake-related parameters as indices of phytoremediation potential. Biologia (Bratisl). 65(6):1004–1011. doi:10.2478/s11756-010-0106-7.
  • Dixit S, Hering JG. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ Sci Technol. 37(18):4182–4189. doi:10.1021/es030309t.
  • Duarte DMM, Gomes MPP, Barreto LCC, Matheus MTT, Garcia Q. 2012. Toxic trace elements effects on seed germination of four Brazilian Savanna tree species. Seed Sci Technol. 40(3):425–432. doi:10.15258/sst.2012.40.3.13.
  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 104(7):1263–1280. doi:10.1093/aob/mcp251.
  • Garg N, Singla P, Bhandari P. 2015. Metal uptake, oxidative metabolism, and mycorrhization in pigeonpea and pea under arsenic and cadmium stress. Turk J Agric For. 39:234–250. doi:10.3906/tar-1406-121.
  • Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc [Internet]. 46(2):235–244. doi:10.1016/S0007-1536(63)80079-0.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84(3):489–500. doi:10.1111/j.1469-8137.1980.tb04556.x.
  • Gomes MP, Carvalho M, Carvalho GS, Marques TCLLSM, Garcia QS, Guilherme L, Soares AM. 2013. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. Int J Phytoremediation. 15(7):633–646. doi:10.1080/15226514.2012.723064.
  • Gomes MP, Andrade ML, Nascentes CC, Scotti MR. 2014a. Arsenic root sequestration by a tropical woody legume as affected by arbuscular mycorrhizal fungi and organic matter: implications for land reclamation. Water, Air, Soil Pollut. 225(4):1919. doi:10.1007/s11270-014-1919-8.
  • Gomes MP, Carvalho M, Marques TCLLSM, Duarte M, De Oliveira C, Nogueira G, Soares ÂM, De Souza Q. 2012a. Arsenic-sensitivity in Anadenanthera peregrina due to arsenic-induced lipid peroxidation. Int J Appl Sci Technol. 2(2):55–63.
  • Gomes MP, Duarte DM, Miranda PLS, Barreto LC, Matheus MT, Garcia QS. 2012b. The effects of arsenic on the growth and nutritional status of Anadenanthera peregrina, a Brazilian savanna tree. J Plant Nut Soil Sci. 175(3):466–473. doi:10.1002/jpln.201100195.
  • Gomes MP, Moura PAS, Nascentes CC, Scotti MR. 2015. Arbuscular mycorrhizal fungi and arsenate uptake by brachiaria grass (Brachiaria decumbens). Bioremediat J. 19(2):151–159.
  • Gomes MP, Soares AM, Garcia QS. 2014b. Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic. J Hazard Mater. 276:97–104. doi:10.1016/j.jhazmat.2014.05.020.
  • Gómez-Acata S, Amora-Lazcano E, Wang ET, Rivera-Orduña FN, Cancino-Diaz JC, Cruz-Maya JA, Jan-Roblero J. 2019. Nodule-forming Sinorhizobium and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico. Bot Sci. 97(4):609–622. doi:10.17129/botsci.2200.
  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 435(7043):819–823. doi:10.1038/nature03610.
  • Gunes A, Pilbeam DJ, Inal A. 2009. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil. 314(1–2):211–220. doi:10.1007/s11104-008-9719-9.
  • Han Y-H, Jia M-R, Liu X, Zhu Y, Cao Y, Chen D-L, Chen Y, Ma LQ. 2017. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere. 186:599–606. doi:10.1016/j.chemosphere.2017.08.031.
  • Li W-X, Chen T-B, Huang Z-C, Lei M, Liao X-Y. 2006. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere. 62(5):803–809. doi:10.1016/j.chemosphere.2005.04.055.
  • Lin J, Wang Y, Sun S, Mu C, Yan X. 2017. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ. 576:234–241. doi:10.1016/j.scitotenv.2016.10.091.
  • Neumann H, Bode-Kirchhoff A, Madeheim A, Wetzel A. 1998. Toxicity testing of heavy metals with the Rhizobium-legume symbiosis: high sensitivity to cadmium and arsenic compounds. Environ Sci Pollut Res Int. 5(1):28–36. doi:10.1007/BF02986371.
  • Newman MC, Unger MA. 2003. Fundamentals of Ecotoxicology. 2nd ed. Newman MC, Unger MA, editors. Boca raton: Lewis Publishers.
  • Oliveira SA. 1986. Método simplificado para determinação colorimétrica de nitrogênio em plantas. Cienc Cult. 38:178–180.
  • Paliouris G, Hutchinson TC. 1991. Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytol. 117(3):449–459. doi:10.1111/j.1469-8137.1991.tb00009.x.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasidic and vesicular-arbuscular mycorrhizal fungi for rapid assessement for infection. Trans Br Mycol Soc. 55(1):158–161. doi:10.1016/S0007-1536(70)80110-3.
  • Reichman SM. 2007. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39(10):2587–2593. doi:10.1016/j.soilbio.2007.04.030.
  • Ren C-G, Kong C-C, Wang S-X, Xie Z-H. 2019. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere. 217:773–779. doi:10.1016/j.chemosphere.2018.11.085.
  • Riaz L, Mahmood T, Yang Q, Coyne MS, D'Angelo E. 2019. Bacteria-assisted removal of fluoroquinolones from wheat rhizospheres in an agricultural soil. Chemosphere. 226:8–16. doi:10.1016/j.chemosphere.2019.03.081.
  • Sarruge JR, Haag HP. 1974. Plant chemical analysis. Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz.”
  • Sharma RK, Agrawal M. 2006. Single and combined effects of cadmium and zinc on carrots: uptake and bioaccumulation. J Plant Nutr. 29(10):1791–1804. doi:10.1080/01904160600899246.
  • Smith E, Naidu R, Alston AM. 2002. Chemistry of inorganic arsenic in soils. J Environ Qual [Internet]. 31(2):557. doi:10.2134/jeq2002.0557.
  • Smith SE, Christophersen HM, Pope S, Smith F. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil. 327(1–2):1–21. doi:10.1007/s11104-009-0089-8.
  • Somasegaran P, Hoben HJ. 1994. Handbook for Rhizobia: methods in legume-rhizobium technology. New York (NY): Springer New York.
  • Srivastava S, Srivastava a. K, Singh B, Suprasanna P, D’souza SF. 2013. The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biol Plant. 57(2):385–389. doi:10.1007/s10535-012-0288-7.
  • Sun Y, Zhang X, Wu Z, Hu Y, Wu S, Chen B. 2016. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci. 39:110–118. doi:10.1016/j.jes.2015.10.005.
  • Tajini F, Trabelsi M, Drevon J-J. 2012. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci. 19(2):157–163. doi:10.1016/j.sjbs.2011.11.003.
  • Tawfik DS, Viola RE. 2011. Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry. 50(7):1128–1134. doi:10.1021/bi200002a.
  • Thirkell TJ, Cameron DD, Hodge A. 2016. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. 39(8):1683–1690. doi:10.1111/pce.12667.
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160(1):1–40. doi:10.1016/j.cbi.2005.12.009.
  • Vieira F, Pedrosa M, Monteze E, Della F, Souza Q. 2020. Does Samarco’ s spilled mud impair the growth of native trees of the Atlantic Rainforest? Ecotoxicol Environ Saf. 189:110021. doi:10.1016/j.ecoenv.2019.110021.
  • Walker C, Mize W, McNabb HS. 1982. Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot. 60(12):2518–2529. doi:10.1139/b82-305.
  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH. 2007. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut. 145(1):225–233. doi:10.1016/j.envpol.2006.03.015.
  • Wu FY, Bi YL, Wong MH. 2009. Dual Inoculation with an arbuscular mycorrhizal fungus and rhizobium to facilitate the growth of alfalfa on coal mine substrates. J Plant Nutr. 32(5):755–771. doi:10.1080/01904160902787867.
  • Xie Q-E, Yan X-L, Liao X-Y, Li X. 2009. The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol. 43(22):8488–8495. doi:10.1021/es9014647.
  • Zhao FJ, Ma JF, Meharg AA, McGrath SP. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181(4):777–794. doi:10.1111/j.1469-8137.2008.02716.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.