328
Views
3
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation for co-contaminated soils of cadmium and pyrene using Phragmites australis (common reed)

, , &

References

  • Alaboudi KA, Ahmed B, Brodie G. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann Agric Sci. 63(1):123–112. doi:10.1016/j.aoas.2018.05.007.
  • Alkio M, Tabuchi TM, Wang X, Colon-Carmona A. 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot. 56(421):2983–2994. doi:10.1093/jxb/eri295.
  • Almeida CM, Mucha AP, Delgado MF, Caçador MI, Bordalo AA, Vasconcelos MT. 2008. Can PAHs influence cu accumulation by salt marsh plants? Mar Environ Res. 66(3):311–318. doi:10.1016/j.marenvres.2008.04.005.
  • Braeckevelt M, Mirschel G, Wiessner A, Rueckert M, Reiche N, Vogt C, Schultz A, Paschke H, Kuschk P, Kaestner M. 2008. Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecol Eng. 33(1):45–53. doi:10.1016/j.ecoleng.2008.02.002.
  • Brinch UC, Ekelund F, Jacobsen CS. 2002. Method for spiking soil samples with organic compounds. Appl Environ Microbiol. 68(4):1808–1816. doi:10.1128/AEM.68.4.1808-1816.2002.
  • Cang L, Fan GP, Zhou DM, Wang QY. 2013. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and ph control. Chemosphere. 90(8):2326–2331. doi:10.1016/j.chemosphere.2012.10.062.
  • Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, Ali S, Yang J, Shen K, Chen X, et al. 2009. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater. 166(2–3):1226–1231. doi:10.1016/j.jhazmat.2008.12.027.
  • Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y. 2010. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater. 177(1-3):384–389. doi:10.1016/j.jhazmat.2009.12.044.
  • Chen X, Liu X, Zhang X, Cao L, Hu X. 2017. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater. 325:319–326. doi:10.1016/j.jhazmat.2016.12.009.
  • Chen S-b, Wang M, Li S-s, Zhao Z-q, E W-d. 2018. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in china. J Integr Agric. 17(4):765–774. doi:10.1016/S2095-3119(17)61892-6.
  • Chen Y, Wang C, Wang Z, Huang S. 2004. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant & Soil. 261(1/2):189–196. doi:10.1023/B:PLSO.0000035565.65775.3c.
  • Chigbo C, Batty L. 2013. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil. J Environ Manage. 129(18):18–24. doi:10.1016/j.jenvman.2013.05.041.
  • Chigbo C, Batty L. 2014. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Environ Sci Pollut Res Int. 21(4):3051–3059. doi:10.1016/j.jenvman.2013.05.041.
  • Das N, Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011:941810–941813. doi:10.4061/2011/941810.
  • Deng H, Ye ZH, Wong MH. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut. 132 (1):29–40. doi:10.1016/j.envpol.2004.03.030.
  • Dhir B, Sharmila P, Saradhi PP. 2009. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Rev Environ Sci Technol. 39(9):754–781. doi:10.1080/10643380801977776.
  • Dong ZY, Huang WH, Xing DF, Zhang HF. 2013. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater. 260:399–408. doi:10.1016/j.jhazmat.2013.05.003.
  • Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo W-Y, Guo X, Hazelton ELG, Kettenring KM, et al. 2017. Cosmopolitan species as models for ecophysiological responses to global change: the common reed Phragmites australis. Front Plant Sci. 8:1833doi:10.3389/fpls.2017.01833.
  • Fitz WJ, Wenzel WW. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol. 99(3):259–278. doi:10.1016/S0168-1656(02)00218-3.
  • Gao Y, Li Q, Ling W, Zhu X. 2011. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J Hazard Mater. 185(2-3):703–709. doi:10.1016/j.jhazmat.2010.09.076.
  • Gao Y, Zhu L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 55(9):1169–1178. doi:10.1016/j.chemosphere.2004.01.037.
  • Giller KE, Witter E, Mcgrath SP. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Rev Soil Biol Biochem. 30(10–11):1389–1414. doi:10.1016/S0038-0717(97)00270-8.
  • Hechmi N, Aissa NB, Abdenaceur H, Jedidi N. 2014. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res Int. 21(2):1304–1313. doi:10.1007/s11356-013-1997-y.
  • Hechmi N, Ben AN, Abdennaceur H, Jedidi N. 2013. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int J Phytoremediation. 15(7):703–713. doi:10.1080/15226514.2012.723067.
  • Hubner TM, Tischer S, Tanneberg H, Kuschk P. 2000. Influence of phenol and phenanthrene on the growth of Phalaris arundinacea and Phragmites australis. Int J Phytoremediation. 2(4):331–342. doi:10.1080/15226510008500042.
  • Jeelani N, Wen Y, Qiao Y, Li J, An S, Leng X. 2018. Individual and combined effects of cadmium and polycyclic aromatic hydrocarbons on the phytoremediation potential of Xanthium sibiricum in co-contaminated soil. Int J Phytoremediation. 20(8):773–779. doi:10.1080/15226514.2018.1425666.
  • Jeelani N, Wen Y, Xu L, Qiao Y, An S, Leng X. 2017. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci Rep. 7(1):8028. doi:10.1038/s41598-017-07831-3.
  • Kaczyńska G, Borowik A, Wyszkowska J. 2015. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. 226(11):372. doi:10.1007/s11270-015-2642-9.
  • Khan S, Rehman S, Cao Q, Jehan N, Shah MT. 2011. Uptake and translocation of lead and pyrene by ryegrass cultivated in aged spiked soil. IJEP. 45(1/2/3):110–122. doi:10.1504/IJEP.2011.039089.
  • Khan MS, Zaidi A, Wani PA, Oves M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 7(1):1–19. doi:10.1007/s10311-008-0155-0.
  • Köbbing JF, Beckmann V, Thevs N, Peng H, Zerbe S. 2016. Investigation of a traditional reed economy (Phragmites australis) under threat: pulp and paper market, values and Netchain at Wuliangsuhai Lake, Inner Mongolia, China. Wetlands Ecol Manage. 24(3):357–371. doi:10.1007/s11273-015-9461-z.
  • Lee SH, Lee WS, Lee CH, Kim JG. 2008. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater. 153(1–2):892–898. doi:10.1016/j.jhazmat.2007.09.041.
  • Lin Q, Shen KL, Zhao HM, Li WH. 2008. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J Hazard Mater. 150(3):515–521. doi:10.1016/j.jhazmat.2007.04.132.
  • Lin Q, Wang Z, Ma S, Chen Y. 2006. Evaluation of dissipation mechanisms by Lolium perenne L., and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ. 368(2–3):814–822. doi:10.1016/j.scitotenv.2006.03.024.
  • Liu R, Dai Y, Sun L. 2015. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. Plos One. 10(3):e0120369. doi:10.1371/journal.pone.0120369.
  • Liu XY, Hu XX, Zhang XY, Chen XP, Chen J, Yuan XY. 2018. Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter. Ecotoxicol Environ Saf. 154:69–74. doi:10.1016/j.ecoenv.2018.02.028.
  • Lu M, Zhang ZZ. 2014. Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with bacillus cereus JP12. Plant Soil. 382(1–2):89–102. doi:10.1007/s11104-014-2147-0.
  • Lu M, Zhang Z-Z, Wang J-X, Zhang M, Xu Y-X, Wu X-J. 2014. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol. 48(2):1158–1165. doi:10.1021/es403337t.
  • Lyubun Y, Muratova A, Dubrovskaya E, Sungurtseva I, Turkovskaya O. 2020. Combined effects of cadmium and oil sludge on sorghum: growth, physiology, and contaminant removal. Environ Sci Pollut Res. 27:22720–22734. doi:10.1007/s11356-020-08789-y.
  • Marchand L, Mench M, Jacob DL, Otte ML. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut. 158(12):3447–3461. doi:10.1016/j.envpol.2010.08.018.
  • Ministry of Environmental Protection, China. 2014. Technical guidelines for risk assessment of contaminated sites. China, Ministry of Environmental Protection (HJ 25.3-2014) (in Chinese).
  • Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD. 2005. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuar Coast Shelf Sci. 65(1–2):191–198. doi:10.1016/j.ecss.2005.06.007.
  • National Soil-Enviromental Quality Standards of China. 2018. Chinese Environmental Science Press, Beijing (NSEQSE, GB 15618 (in Chinese).
  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B. 2011. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One. 6(3):e17961. doi:10.1371/journal.pone.0017961.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Romero E, Fernández-Bayo J, Díaz JMC, Nogales R. 2010. Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Appl Soil Ecol. 44(3):198–204. doi:10.1016/j.apsoil.2009.12.006.
  • Rusin M, Gospodarek J, Barczyk G, Nadgórska-Socha A. 2018. Antioxidant responses of Triticum aestivum plants to petroleum-derived substances. Ecotoxicology. 27(10):1353–1367. doi:10.1007/s10646-018-1988-3.
  • Salazar S, Sanchez LE, Alvarez J, Valverde A, Galindo P, Igual JM, Peix A, Santa-Regina I. 2011. Correlation among soil enzyme activities under different forest system management practices. Ecol Eng. 37(8):1123–1131. doi:10.1016/j.ecoleng.2011.02.007.
  • Shen G, Cao L, Lu Y, Hong J. 2005. Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environ Sci Pollut Res Int. 12(5):259–263. doi:10.1065/espr2005.06.266.
  • Shentu J, He Z, Yang XE, Li T. 2008. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern china. J Agric Food Chem. 56(15):6382–6388. doi:10.1021/jf800882q.
  • Stpniewska Z, Wolińska A, Ziomek J. 2009. Response of soil catalase activity to chromium contamination. J Environ Sci. 21(8):1142–1147. doi:10.1016/S1001-0742(08)62394-3.
  • Suman J, Uhlik O, Viktorova J, Macek T. 2018. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci. 9:1476. doi:10.3389/fpls.2018.01476.
  • Sun Y, Zhou Q, Wang L W, Liu W. 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater. 161(2–3):808–814. 2008.04.030. doi:10.1016/j.jhazmat.
  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X. 2011. Phytoremediation for co-contaminated soils of benzo[a]pyrene (b[a]p) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater. 186(2–3):2075–2082. doi:10.1016/j.jhazmat.2010.12.116.
  • Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P. 2011. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater. 186(2–3):1271–1276. doi:10.1016/j.jhazmat.2010.11.126.
  • Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M. 2011. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res. 45(4):1629–1638. doi:10.1016/j.watres.2010.11.044.
  • Tripathi V, Fraceto LF, Abhilash PC. 2015. Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng. 82:330–335. doi:10.1016/j.ecoleng.2015.05.027.
  • Wang K, Zhu Z, Huang H, Li T, He Z, Yang X, Alva A. 2012. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii. J Soils Sediments. 12(4):556–564. doi:10.1007/s11368-012-0471-7.
  • Weis JS, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 30(5):685–700. doi:10.1016/j.envint.2003.11.002.
  • Xie XM, Liao M, Yang J, Chai JJ, Fang S, Wang RH. 2012. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere. 88(10):1190–1195. doi:10.1016/j.chemosphere.2012.03.068.
  • Xu Y, Seshadri B, Bolan N, Sarkar B, Ok SY, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T, et al. 2019. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int. 125:478–488. doi:10.1016/j.envint.2019.01.071.
  • Yang Y, Shen Q. 2020. Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal. Environ Sci Pollut Res Int. 27(5):4905–4916. doi:10.1007/s11356-019-07256-7.
  • Zhang H, Dang Z, Zheng LC, Yi XY. 2009. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol. 6(2):249–258. doi:10.1007/BCF03327629.
  • Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R. 2012. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma. 175–176:1–8. doi:10.1016/j.geoderma.2012.01.020.
  • Zhang Z, Rengel ZK, Meney K. 2010. Polynuclear aromatic hydrocarbons (PAHs) differentially influence growth of various emergent wetland species. J Hazard Mater. 182(1–3):689–669. doi:10.1016/j.jhazmat.2010.06.087.
  • Zhang Z, Rengel Z, Meney K, Pantelic L, Tomanovic R. 2011. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater. 189(1–2):119–126. J Hazard Mater. 189(1–2):119–126. doi:10.1016/j.jhazmat.2011.02.007.
  • Zhu LZ, Zhang M. 2008. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environ Pollut. 156(1):46–52. doi:10.1016/j.envpol.2008.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.