1,324
Views
3
CrossRef citations to date
0
Altmetric
Articles

Anaerobic digestion of mercury phytoextraction crops with intermediary stage bio-waste polymer treatment

, , , &

References

  • Abdel-Shafy HI, Mansour M. 2014. Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt J Petroleum. 23(4):409–417. doi:10.1016/j.ejpe.2014.09.009.
  • APHA. 1999. Standard methods for the examination of water and wastewater. 20th ed. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. Section 2540.
  • Beauford W, Barber J, Barringe AR. 1977. Uptake and distribution of mercury within higher plants. Physiol Plant. 39(4):261–265. doi:10.1111/j.1399-3054.1977.tb01880.x.
  • Beckers F, Rinklebe J. 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: a review. Crit Rev Env Sci Tech. 47(9):693–794. doi:10.1080/10643389.2017.1326277.
  • Boening DW. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40(12):1335–1351. doi:10.1016/S0045-6535(99)00283-0.
  • Budnik LT, Casteleyn L. 2018. Mercury pollution in modern times and its socio-medical consequences. Sci Total Environ. 654:720-734. doi:10.1016/j.scitotenv.2018.10.408.
  • Cao Z, Wang S, Wang T, Chang Z, Shen Z, Chen Y. 2015. Using contaminated plants involved in phytoremediation for anaerobic digestion. Int J Phytoremediation. 17(1–6):201–207. doi:10.1080/15226514.2013.876967.
  • Capone DG, Reese DD, Kiene RP. 1983. Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomas in anoxic salt marsh sediments. Appl Environ Microb. 45(5):1586–1591. doi:10.1128/AEM.45.5.1586-1591.1983.
  • Chalker JM. Personal communication. 6th June 2018.
  • Cozzolino V, De Martino A, Nebbioso A, Di Meo V, Salluzzo A, Piccolo A. 2016. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environ Sci Pollut Res Int. 23(11):11312–11322. doi:10.1007/s11356-016-6337-6.
  • Crockett MP, Evans AM, Worthington M, Albuquerque IS, Slattery AD, Gibson CT, Campbell JA, Lewis DA, Bernardes JL, Chalker JM. 2016. Sulfur-limonene polysulfide: a material synthesized entirely from industrial by-products and its use in removing toxic metals from water and soil. Angew Chem Int Ed Engl. 55(5):1714–1718. doi:10.1002/anie.201508708.
  • Ericksen JA, Gustin MS. 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci Total Environ. 324(1-3):271–279. doi:10.1016/j.scitotenv.2003.10.034.
  • Esdaile LJ, Chalker JM. 2018. The mercury problem in artisanal and small-scale gold mining. Chemistry. 24(27):6905–6916. doi:10.1002/chem.201704840.
  • European Union. 1999. Council directive 1999/31/EC of 26 April 1999 on the landfill of waste (online) [accessed 2019 Sep 27]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0031.
  • Fernandes TV, Klaasse Bos GJ, Zeeman G, Sanders JPM, van Lier JB. 2009. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour Technol. 100(9):2575–2579. doi:10.1016/j.biortech.2008.12.012.
  • Greger M, Wang Y, Neuschütz C. 2005. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ Pollut. 134(2):201–208. doi:10.1016/j.envpol.2004.08.007.
  • Hossain MK, Strezov V, Nelson PF. 2009. Thermal characterisation of the products of wastewater sludge pyrolysis. J Anal Appl Pyrol. 85(1–2):442–446. doi:10.1016/j.jaap.2008.09.010.
  • IPEN. 2016. Guidance on the identification, management and remediation of mercury contaminated sites (online) [accessed 2019 Sep 27]. http://ipen.org/documents/ipen-guidance-identification-management-and-remediation-mercury-contaminated-sites.
  • John Innes Manufacturer’s Association. 2018. Formulation (online) [accessed 2019 Sep 27]. https://johninnes.info/compost/formulation.html.
  • Kerafast. 2019. Polysulfide mercury sorbent (microporous) (online) [accessed 2019 Sep 27]. https://www.kerafast.com/PDF/Polysulfide%20Polymer%20Mercury%20Sorbent%20(Porous).pdf.
  • Kovacs H, Szemmelveisz K. 2017. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - a review. Chemosphere. 166:8–20. doi:10.1016/j.chemosphere.2016.09.076.
  • Lee J, Park KY, Cho J, Kim JY. 2018. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosphere. 191:520–526. doi:10.1016/j.chemosphere.2017.10.072.
  • Leonard TL, Taylor GE, Gustin MS, Fernandez G. 1998. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ Toxicol Chem. 17(10):2063–2071. doi:10.1002/etc.5620171024.
  • Liao L, Selim HM, DeLaune RD. 2009. Mercury adsorption-desorption and transport in soils. J Environ Qual. 38(4):1608–1616. doi:10.2134/jeq2008.0343.
  • Lingle JW, Hermann ER. 1975. Mercury in anaerobic sludge digestion. J Water Pollut Control Fed. 47(3 pt 1):466–471.
  • Lomonte C, Wang Y, Doronila A, Gregory D, Baker AJM, Siegele R, Kolev S. 2014. Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-pixe spectrometry. Int J Phytoremediation. 16(7–12):1170–1182. doi:10.1080/15226514.2013.821453.
  • López FA, López-Delgado A, Padilla I, Tayibi H, Alguacil FJ. 2010. Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term mercury storage. Sci Total Environ. 408(20):4341–4345. doi:10.1016/j.scitotenv.2010.07.008.
  • Mbanga O, Ncube S, Tutu H, Chimuka L, Cukrowska E. 2019. Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environ Monit Assess. 191(3):186–198. doi:10.1007/s10661-019-7329-z.
  • Meagher RB, Heaton A. 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol. 32(11–12):502–513. doi:10.1007/s10295-005-0255-9.
  • Moestedt J, Malmborg J, Nordell E. 2015. Determination of methane and carbon dioxide formation rate constants for semi-continuously fed anaerobic digesters. Energies. 8(1):645–655. doi:10.3390/en8010645.
  • Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helmig D. 2017. Tundra uptake of atmospheric elemental mercury drives arctic mercury pollution. Nature. 547(7662):201–216. doi:10.1038/nature22997.
  • Oji LN. 1998. Mercury disposal via sulfur reductions. J Env Eng. 124(10):945–952. doi:10.1061/(ASCE)0733-9372(1998)124:10(945).
  • Oleszkiewicz JA, Sharma VK. 1990. Stimulation and inhibition of anaerobic processes by heavy metals - a review. Biol Waste. 31(1):45–67. doi:10.1016/0269-7483(90)90043-R.
  • Paulo LM, Stams AJM, Sousa DZ. 2015. Methanogens, sulphate and heavy metals: a complex system. Rev Environ Sci Biotechnol. 14(4):537–553. doi:10.1007/s11157-015-9387-1.
  • Pat-Espadas AM, Loredo Portales R, Amabilis-Sosa L, Gómez G, Vidal G. 2018. Review of constructed wetlands for acid mine drainage treatment. Water. 10(11):1685–1625. doi:10.3390/w10111685.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Ripley LE, Boyle WC, Converse JC. 1986. Improved alkalimetric monitoring for anaerobic digestion of high strength wastes. Journal of the Water Pollution Control Federation. 58 (5):406–411.
  • Sasmaz M, Akgül B, Yildirim D, Sasmaz A. 2016. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey. Int J Phytoremediation. 18(1):69–76. doi:10.1080/15226514.2015.1058334.
  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K. 2004. Phytoextraction crop disposal-an unsolved problem. Environ Pollut. 128(3):373–379. doi:10.1016/j.envpol.2003.09.012.
  • Smolinska B, Leszczynska J. 2015. Influence of combined use of iodide and compost on Hg accumulation by Lepidium sativum L. J Environ Manage. 150:499–507. doi:10.1016/j.jenvman.2014.12.043.
  • Smolinska B, Rowe S. 2015. The potential of Lepidium sativum L. for phytoextraction of Hg-contaminated soil assisted by thiosulphate. J Soils Sediments. 15(2):393–400. doi:10.1007/s11368-014-0997-y.
  • Smolinska B, Szczodrowska A. 2017. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil. N Biotechnol. 38(Pt B):74–83. doi:10.1016/j.nbt.2016.07.004.
  • Streets DG, Horowitz HM, Jacob DJ, Lu Z, Levin L, ter Schure AFH, Sunderland EM. 2017. Total mercury released to the environment by human activities. Environ Sci Technol. 51(11):5969–5977. doi:10.1021/acs.est.7b00451.
  • Suszcynsky EM, Shann JR. 1995. Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environ Toxicol Chem. 14(1):61–67. doi:10.1002/etc.5620140108.
  • Tian Y, Zhang H. 2016. Producing biogas from agricultural residues generated during phytoremediation process: possibility, threshold, and challenges. Intl J Green Energy. 13(15):1556–1563. doi:10.1080/15435075.2016.1206017.
  • UNEP 2013. Global Mercury Assessment 2013: sources, emissions, releases and environmental transport (online). United Nations Environment Programme [accessed 2019 Sep 27]. http://wedocs.unep.org/handle/20.500.11822/7984?show=full.
  • United Nations Environment Programme. 2017. Minamata convention on mercury, text and annexes. Nairobi: United Nations Environment Programme. p. 1–67.
  • Van Slycken S, Witters N, Meers E, Peene A, Michels E, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Wierinck I, et al. 2013. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ Pollut. 178:375–380. doi:10.1016/j.envpol.2013.03.032.
  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L. 2012. Remediation of mercury contaminated sites – a review. J Hazard Mater. 221–222:1–18. doi:10.1016/j.jhazmat.2012.04.035.
  • Willscher S, Mirgorodsk D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P. 2013. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy. 131-132:46–53. doi:10.1016/j.arabjc.2013.08.010.
  • Worthington MJH, Kucera RL, Albuquerque IS, Gibson CT, Sibley A, Slattery AD, Campbell JA, Alboaiji SFK, Muller KA, Young J, Adamson N, et al. 2017. Laying waste to mercury: inexpensive sorbents made from sulfur and recycled cooking oils. Chemistry. 23(64):16219–16230. doi:10.1002/chem.201704108.
  • Xu J, Garcia Bravo A, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J. 2015. Sources and remediation techniques for mercury contaminated soil. Environ Int. 74:42–53. doi:10.1016/j.envint.2014.09.007.
  • Yenigün O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48(5–6):901–911. doi:10.1016/j.procbio.2013.04.012.
  • Zhang H, Tian Y, Wang L, Zhang L, Dai L. 2013. Ecophysiological characteristics and biogas production of cadmium-contaminated crops. Bioresour Technol. 146:628–636. doi:10.1016/j.biortech.2013.07.148.