165
Views
6
CrossRef citations to date
0
Altmetric
Articles

Tolerance of Landoltia punctata to arsenate: an evaluation of the potential use in phytoremediation programs

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agency for Toxic Substances & Disease Registry [ATSDR]. 2019. Substance priority list Atlanta (GA) [accessed 2020 May 19]. https://www.atsdr.cdc.gov/spl/index.html.
  • Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş I, Ünay A, Abdel-Daim MM, Bin-Jumah M, Hasanuzzaman M, Kalderis D. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability. 12(5):1927. doi:10.3390/su12051927.
  • Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 53(372):1331–1341. doi:10.1093/jxb/53.372.1331.
  • Anderson JV, Davis DG. 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant. 120(3):421–433. doi:10.1111/j.0031-9317.2004.00249.x.
  • Anderson MD, Prasad TK, Stewart CR. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109(4):1247–1257. doi:10.1104/pp.109.4.1247.
  • Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701.
  • Bali AS, Sidhu GPS, Kumar V. 2020. Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett. 18(4):1243–1275. doi:10.1007/s10311-020-01012-x.
  • Barbosa AP, Gonçalves EC, Azevedo AA. 2015. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae). Environ Sci Pollut Res Int. 22(15):11265–11274. doi:10.1007/s11356-015-4342-9.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Bhaduri AM, Fulekar MH. 2012. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol. 11(1):55–69. doi:10.1007/s11157-011-9251-x.
  • Borba RP, Figueiredo BR, Rawlins B, Matschullat J. 2000. Arsenic in water and sediment in the iron quadrangle, state of Minas Gerais, Brazil. RBG. 30(3):558–561. doi:10.25249/0375-7536.2000303558561.
  • Boveris A. 1984. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Meth Enzymol. 105:429–435. doi:10.1016/s0076-6879(84)05060-6.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1006/abio.1976.9999.
  • Campos FV, de Oliveira JA, Silva AA, Ribeiro C, Farnese FS. 2019b. Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool?. Ecol Indic. 104:794–801. doi:10.1016/j.ecolind.2019.04.048.
  • Campos FV, de Oliveira JA, Silva AA, Ribeiro C, Montoya SG, Farnese FS. 2019a. Involvement of glutathione and glutathione metabolizing enzymes in Pistia stratiotes tolerance to arsenite. Int J Phytoremed. 22(4):404–411. doi:10.1080/15226514.2019.1667951.
  • Carlberg I, Mannervik B. 1985. Glutathione reductase. Meth Enzymol. 113:484–495. doi:10.1016/s0076-6879(85)13062-4.
  • Chance B, Maehley AC. 1955. Assay of catalase and peroxidase. Methods Enzymol. 2:764–755.
  • Clark RB. 1975. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 23(3):458–460. doi:10.1021/jf60199a002.
  • Dai LP, Dong XJ, Ma HH. 2012. Antioxidative and chelating properties of anthocyanins in Azolla imbricata induced by cadmium. Pol J Environ Stud. 21:837–844.
  • Da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, de Oliveira JA. 2018. Oxidative stress triggered by arsenic in a tropical macrophyte is alleviated by endogenous and exogenous nitric oxide. Braz J Bot. 41(1):21–28. doi:10.1007/s40415-017-0431-y.
  • Da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, Oliveira JA. 2017. Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte. Theor Exp Plant Physiol. 29(4):203–213. doi:10.1007/s40626-017-0096-8.
  • Duman F, Ozturk F, Aydin Z. 2010. Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure. Ecotoxicology. 19(5):983–993. doi:10.1007/s10646-010-0480-5.
  • Durkee J, Bartrem C, Möller G. 2017. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA. Chemosphere. 168:1126–1135. doi:10.1016/j.chemosphere.2016.10.094.
  • Farnese FS, Oliveira JA, Lima FS, Leão GA, Gusman GS, Silva LC. 2014. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol. 74:108–112.
  • Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B. 2004. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Pollut. 132(2):289–296. doi:10.1016/j.envpol.2004.04.020.
  • Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133(1):21–25. doi:10.1007/BF00386001.
  • Gay C, Gebicki JM. 2000. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem. 284(2):217–220. doi:10.1006/abio.2000.4696.
  • Geng A, Wang X, Li Q, Yang H, Chen Y, Liu W, Chen Y, Wang F. 2020. Mechanism of anthocyanins-mediated resistance to heavy metals stresses in plants: a review. J South Agr. 51(1):80–90.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi:10.1104/pp.59.2.309.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48(12):909–930. doi:10.1016/j.plaphy.2010.08.016.
  • Gould KS, McKelvie J, Markham KR. 2002. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25(10):1261–1269. doi:10.1046/j.1365-3040.2002.00905.x.
  • Guo L, Ding Y, Xu Y, Li Z, Jin Y, He K, Fang Y, Zhao H. 2017. Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism. Aquat Toxicol. 190:87–93. doi:10.1016/j.aquatox.2017.06.024.
  • Hatje V, Pedreira RM, de Rezende CE, Schettini CF, de Souza GC, Marin DC, Hackspacher PC. 2017. The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep. 7(1):1–13. doi:10.1038/s41598-017-11143-x.
  • Havir EA, Mchale NA. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84(2):450–455. doi:10.1104/pp.84.2.450.
  • Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid‐reactive‐substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207(4):604–611. doi:10.1007/s004250050524.
  • Islam A, Saha PK, Iqbal M, Islam MN, Nayeem M. 2016. Removal of arsenic by water hyacinth from arsenic contaminated water. Water Int. 1(2):36–41.
  • Kamperidou I, Vasilakakis M. 2006. Effect of propagation material on some quality attributes of strawberry fruit (Fragaria × ananassa. Var. Selva). Sci Hortic. 107(2):137–142. doi:10.1016/j.scienta.2005.06.009.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57(2):315–319. doi:10.1104/pp.57.2.315.
  • Koshiba T. 1993. Cytosolic ascorbate peroxidase in seedlings and leaves of maize (Zea mays). Plant Cell Physiol. 34(5):713–721. doi:10.1093/oxfordjournals.pcp.a078474.
  • Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, Bali AS, Karaouzas I, Bhardwaj R, Thukral AK, Gyasi-Agyei Y, et al. 2019a. Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere. 236:124364. doi:10.1016/j.chemosphere.2019.124364.
  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A. 2019b. Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere. 216:449–462. doi:10.1016/j.chemosphere.2018.10.066.
  • Kuo CC, Moon KA, Wang S, Silbergeld E, Navas-Acien A. 2017. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 125(8):087001–087016. doi:10.1289/EHP577.
  • Kuo MC, Kao CH. 2003. Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologia Plant. 46(1):149–152. doi:10.1023/A:1022356322373.
  • Lahive E, O'Callaghan MJA, Jansen MAK, O'Halloran J. 2011. Uptake and partitioning of zinc in Lemnaceae. Ecotoxicology. 20(8):1992–2002. doi:10.1007/s10646-011-0741-y.
  • Leão GA, Oliveira JAD, Felipe RTA, Farnese FS. 2017. Phytoremediation of arsenic-contaminated water: the role of antioxidant metabolism of Azolla caroliniana Willd. (Salviniales). Acta Bot Bras. 31(2):161–168. doi:10.1590/0102-33062016abb0407.
  • Li TY, Xiong ZT. 2004. Cadmium-induced colony disintegration of duckweed (Lemna paucicostata Hegelm.) and as biomarker of phytotoxicity. Ecotoxicol Environ Saf. 59(2):174–179. doi:10.1016/j.ecoenv.2003.11.007.
  • Lin YF, Aarts MG. 2012. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci. 69(19):3187–3206. doi:10.1007/s00018-012-1089-z.
  • Malar S, Shivendra SV, Favas PJC, Perumal V. 2016. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart)]. Bot Stud. 55(1):11. doi:10.1186/s40529-014-0054-6.
  • McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14(3):277–282. doi:10.1016/s0958-1669(03)00060-0.
  • Mkandawire M, Dudel EG. 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ. 336(1-3):81–89. doi:10.1016/j.scitotenv.2004.06.002.
  • Mohammadi M, Karr AL. 2001. Superoxide anion generation in effective and ineffective soybean root nodules. J Plant Physiol. 158(8):1023–1029. doi:10.1078/S0176-1617(04)70126-1.
  • Moller IM, Sweetlove LJ. 2010. ROS signalling-specificity is required. Trends Plant Sci. 15(7):370–374. doi:10.1016/j.tplants.2010.04.008.
  • Nagalakshmi N, Prasad M. 2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 160(2):291–299. doi:10.1016/S0168-9452(00)00392-7.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Prado C, Pagano E, Prado F, Rosa M. 2012. Detoxification of Cr(VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes. J Hazard Mater. 239-240:355–361. doi:10.1016/j.jhazmat.2012.09.010.
  • Rai PK. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol. 39(9):697–753. doi:10.1080/10643380801910058.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 318:587–599. doi:10.1016/j.jhazmat.2016.07.053.
  • Sidhu G. 2016. Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res. 5(1):445–446.
  • Sidhu GPS, Bali AS, Singh HP, Batish D, Kohli RK. 2020. Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress. Chemosphere. 244:125350. doi:10.1016/j.chemosphere.2019.125350.
  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK. 2018a. Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere. 205:234–243. doi:10.1016/j.chemosphere.2018.04.106.
  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK. 2018b. Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae. Int J Phytoremed. 20(5):483–489. doi:10.1080/15226514.2017.1374331.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2016. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem. 105:290–296. doi:10.1016/j.plaphy.2016.05.019.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2017a. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf. 135:209–215. doi:10.1016/j.ecoenv.2016.10.001.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2017b. Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere. 182:129–136. doi:10.1016/j.chemosphere.2017.05.026.
  • Silva AA, de Oliveira JA, Campos FV, Ribeiro C, Farnese FS, Costa AC. 2018. Phytoremediation potential of Salvinia molesta for arsenite contaminated water: role of antioxidant enzymes. Theor Exp Plant Physiol. 30(4):275–286. doi:10.1007/s40626-018-0121-6.
  • Silva AA, de Oliveira JA, Campos FV, Ribeiro C, Farnese FS. 2017. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern. Acta Bot Bras. 31(4):657–664. doi:10.1590/0102-33062017abb0087.
  • Singh HP, Batish DR, Kohli RK, Arora K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53(1):65–73. doi:10.1007/s10725-007-9205-z.
  • Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, Havlicek Z, Slama P, Nawrath A. 2012. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. IJERPH. 9(11):3789–3805. doi:10.3390/ijerph9113789.
  • Souri Z, Cardoso AA, Da-Silva CJ, Oliveira LM, Dari B, Sihi D, Karimi1 N. 2019. Heavy metals and photosynthesis. In: Ahmad P, Ahanger MA, Alyemeni MN, Alam P, editors. Photosynthesis, productivity, and environmental stress. Chichester: John Wiley & Sons Ltd. p. 107–134.
  • Tang J, Chen C, Chen L, Daroch M, Cui Y. 2017. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species. Environ Sci Pollut Res Int. 24(30):23864–23871. doi:10.1007/s11356-017-0004-4.
  • Tippery NP, Les DH. 2020. Tiny plants with enormous potential: phylogeny and evolution of duckweeds. In: Cao X, Fourounjian P, Wang W, editors. The duckweed genomes. compendium of plant genomes. New York: Springer. p. 19–38.
  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis F. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25(4):158–165. doi:10.1016/j.tibtech.2007.02.003.
  • Vergilio CDS, Lacerda D, Oliveira BCV, Sartori E, Campos GM, Pereira ALS, Aguiar DB, Souza TS, Almeida MG, Thompson F, et al. 2020. Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais). Sci Rep. 10(1):1–12. doi:10.1038/s41598-020-62700-w.
  • WHO. 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva.
  • Xu H, Yu C, Xia X, Li M, Li H, Wang Y, Wang S, Wang C, Ma Y, Zhou G. 2018. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation. Chemosphere. 190:154–165. doi:10.1016/j.chemosphere.2017.09.146.
  • Zhao FJ, McGrath SP, Meharg AA. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 61:535–559. doi:10.1146/annurev-arplant-042809-112152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.