467
Views
17
CrossRef citations to date
0
Altmetric
Articles

Field testing phytoremediation of organic and inorganic pollutants of sewage drain by bacteria assisted water hyacinth

, , , ORCID Icon, &

References

  • Abedinzadeh M, Etesami H, Alikhani HA. 2019. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep (Amst). 21:e00305.
  • Afzal M, Khan QM, Sessitsch A. 2014. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 117:232–242.
  • Afzal M, Shabir G, Hussain I, Khalid ZM. 2008. Paper and board mill effluent treatment with the combined biological–coagulation–filtration pilot scale reactor. Bioresour Technol. 99(15):7383–7387.
  • Ajayi TO, Ogunbayio AO. 2012. Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J Sustain Dev. 5(7):80–90.
  • Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G. 2013. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere. 92(6):688–694.
  • APHA. 2012. Standard methods for the examination of water and wastewater. 17th ed. Washington, DC: American Public Health Association.
  • Batool A, Saleh TA. 2020. Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol Environ Saf. 189:109924.
  • Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS. 2014. Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol. 60:67–76.
  • Borker AR, Mane AV, Saratale GD, Pathade GR. 2013. Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emir J Food Agric. 25(6):443–456.
  • Cébron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C. 2009. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol. 75(19):6322–6330.
  • Ceschin S, Sgambato V, Ellwood NTW, Zuccarello V. 2019. Phytoremediation performance of Lemna communities in a constructed wetland system for wastewater treatment. Environ Exp Bot. 162:67–71.
  • Chandanshive V, Rane N, Tamboli A, Gholave A, Khandare R, Govindwar S. 2017. Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater. 338:47–56.
  • Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon B, Jadhav JP, Govindwar SP. 2018. In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere. 210:968–976.
  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X. 2017. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol. 8:2538.
  • Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P. 2016. Hydroponic root mats for wastewater treatment. Environ Sci Pollut Res Int. 23(16):15911–15928.
  • Das S, Goswami S, Talukdar AD. 2016. Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turk J Biol. 40:84–94.
  • Desmet NJS, Van-Belleghem S, Seuntjens P, Bouma TJ, Buis K, Meire P. 2011. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys Chem Earth Parts A/B/C. 36(12):479–489.
  • Dhir B. 2013. Aquatic plant species and removal of contaminants. In: Dhir B, editor. Phytoremediation: role of aquatic plants in environmental clean-up. New Delhi (India): Springer India. p. 21–50.
  • Diaz-Ramirez IJ, Escalante-Espinosa E, Favela- Torres E, Gutierrez-Rojas M, Ramirez-Saad H. 2008. Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeterior Biodegradation. 62(1):21–30.
  • Farzi A, Borghei SM, Vossoughi M. 2017. The use of halophytic plants for salt phytoremediation in constructed wetlands. Int J Phytoremediat. 19(7):643–650.
  • Feng N, Yu J, Zhao H, Cheng Y, Mo C, Cai Q, Li Y, Li H, Wong M. 2017. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ. 583:352–368.
  • Feng W, Xiao K, Zhou W, Zhu D, Zhou Y, Yuan Y, Xiao N, Wan X, Hua Y, Zhao J. 2017. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour Technol. 223:287–295.
  • Gao YZ, Zhu LZ. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 55(9):1169–1178.
  • Glick BR. 2012. Plant growth-promoting bacteria: mechanism and applications. Scientifica. 2012:1–15.
  • Goswami R, Thakur R, Sarma KP. 2010. Uptake of lead from aqueous solution using Eichhornia crassipes: effect on chlorophyll content and photosynthetic rate. Int J ChemTech Res. 2(3):1702–1705.
  • Guidi Nissim W, Cincinelli A, Martellini T, Alvisi L, Palm E, Mancuso S, Azzarello E. 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 164:356–366.
  • Hamme JD, Singh A, Ward OP. 2003. Recent advances in petroleum microbiology. MMBR. 67(4):503–549.
  • Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 169(1–3):1–15.
  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. 2018. Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: phytoremediation advances in the field. J Environ Manage. 224:387–395.
  • Ijaz A, Iqbal Z, Afzal M. 2016. Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci Technol. 74(9):2192–2201.
  • Ijaz A, Shabir G, Khan QM, Afzal M. 2015. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng. 84:58–66.
  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO, Teixeira AS, Peralba MCR, Camargo FAO. 2008. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol. 99(7):2637–2643.
  • Jafari N. 2010. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J Appl Sci Environ Manage. 14:43–49.
  • Kamran MA, Amna Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Munis MFH, Tan Z, Chaudhary HJ. 2014. The potential of the flora from different regions of Pakistan in phytoremediation: a review. Environ Sci Pollut Res. 21:801–812.
  • Khan N, Bano A. 2016. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediat. 18(12):1258–1269.
  • Khan S, Afzal M, Iqbal S, Khan QM. 2013. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 90(4):1317–1332.
  • Li X, Cong W. 2011. Effects of shading and UV-B treatments on plant type and photosynthesis of Eichhornia crassipes. J Hydroecol. 32(6):38–45.
  • Lin Y, Li B. 2016. Removal of pharmaceuticals and personal care products by Eichhornia crassipe, and Pistia stratiotes. J Taiwan Inst Chem Eng. 58:318–323.
  • Lu B, Xu Z, Li J, Chai X. 2018. Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers. Ecol Eng. 110:18–26.
  • Ma Y, Rajkumar M, Luo Y, Freitas H. 2011. Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater. 195:230–237.
  • Machate T, Noll H, Behrens H, Kettrup A. 1997. Degradation of phenanthrene and hydraulic characteristics in a constructed wetland. Water Res. 31(3):554–560.
  • Mahfooz Y, Yasar A, Tabinda AB, Sohail MT, Siddiqua A, Mahmood S. 2017. Quantification of the river Ravi pollution load and oxidation pond treatment to improve the drain water quality. DWT. 85:132–137.
  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage. 254:109779.
  • Marques APGC, Rangel AOSS, Castro PML. 2011. Remediation of heavy metal contaminated soils: an overview of site remediation techniques. Crit Rev Environ Sci Technol. 41(10):879–914.
  • Meng L, Qiao M, Arp HPH. 2011. Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono-and mixed cultures. J Soils Sediments. 11(3):482–490.
  • Mishra S, Maiti A. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 24(9):7921–7937.
  • Mishra VK, Tripathi BD. 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater. 164(2–3):1059–1063.
  • Mukherjee S, Mondal GC. 1995. Removal of lead by water hyacinth. Ind J Chem Technol. 2:59–62.
  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M. 2010. Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J. 74(2):533–542.
  • Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R. 2012. Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere. 87(10):1186–1191.
  • Odjegba J, Fasidi IO. 2007. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist. 27(3):349–355.
  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EAH, Reardon KF. 2007. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J Environ Qual. 36(5):1461–1469.
  • Ong S, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K. 2010. Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour Technol. 101(23):9049–9057.
  • Qin H, Zhang Z, Liu M, Liu H, Wang Y, Wen X, Zhang Y, Yan S. 2016. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecol Eng. 95:753–762.
  • Rane N, Patil S, Chandanshive V, Kadam S, Khandare R, Jadhav J, Govindwar S. 2016. Ipomoea hederifolia rooted soil bed and Ipomoea aquatica rhizo-filtration coupled phyto reactors for efficient treatment of textile wastewater. Water Res. 96:1–11.
  • Rehman K, Ijaz A, Arslan M, Afzal M. 2019. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int J Phytoremediat. 21(13):1273–1289.
  • Rehman K, Imran A, Amin I, Afzal M. 2018. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater. 349:242–251.
  • Riaz G, Tabinda AB, Iqbal S, Yasar A, Abbas M, Khan AM, Mahfooz Y, Baqar M. 2017. Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. Int J Phytoremediat. 19(10):894–898.
  • Ribeiro de Souza SC, Adrián López de Andrade S, Anjos de Souza L, Schiavinato MA. 2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage. 110:299–307.
  • Saleem M, Ahmad S, Ahmad M. 2014. Potential of Bacillus cereus for bioremediation of pulp and paper industrial waste. Ann Microbiol. 64(2):823–829.
  • Seyed MM, Babak M, Hossein MH, Hoseinali A, Ali AZ. 2018. Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf. 147:206–216.
  • Shehzadi M, Afzal M, Khan M, Islam E, Mobin A, Anwar S, Khan Q. 2014. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 58:152–159.
  • Singh S, Chandra R, Patel DK, Reddy MMK, Rai V. 2008. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour Technol. 99(13):5703–5709.
  • Swain G, Adhikari S, Mohanty P. 2014. Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. Int J Agric Sci Technol. 2(1):1.
  • Syed JH, Malik RN. 2011. Occurrence and source identification of organochlorine pesticide (OCPs) in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku. Environ Earth Sci. 62(6):1311–1321.
  • Syed JH, Malik RN, Muhammad A. 2014. Organochlorine pesticides in surface soils and sediments from obsolete pesticides dumping site near Lahore city, Pakistan: contamination status and their distribution. Chem Ecol. 30(1):87–96.
  • Tanner CC, Headley TR. 2011. Components of floating emergent macrophyte treatment wetlands influencing removal of storm water pollutants. Ecol Eng. 37(3):474–486.
  • Tara N, Arslan M, Hussain Z, Iqbal M, Khan QM, Afzal M. 2019. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J Cleaner Prod. 217:541–548.
  • Ugya AY, Imam TS, Hassan AS. 2015. The use of Ecchornia crassipes to remove some heavy metals from romi stream: a case study of Kaduna refinery and petrochemical company polluted stream. J Pharm Biol Sci. 10:43–46.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 117:28–40.
  • Victor KK, Séka Y, Norbert KK, Sanogo TA, Celestin AB. 2016. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediat. 18(10):949–955.
  • Vymazal J. 2007. Removal of nutrients in various types of constructed wetlands. Sci Total Environ. 380(1–3):48–65.
  • Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, Pan F, Huang L, Yang X, Feng Y. 2019. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere. 234:769–776.
  • Watharkar AD, Kadam SK, Khandare RV, Kolekar PD, Jeon B-H, Jadhav JP, Govindwar SP. 2018. Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: a lab to land approach for in situ soil remediation. Ecotoxicol Environ Saf. 161:70–77.
  • Wickramasinghe S, Jayawardana CK. 2018. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater. J Water Security. 4:1–8.
  • Wu T, Xu J, Liu J, Guo W, Li X, Xia J, Xie W, Yao Z, Zhang Y, Wang R. 2019. Characterization and initial application of endophytic Bacillus safensis strain ZY16 for improving phytoremediation of oil-contaminated saline soils. Front Microbiol. 10:991.
  • Yang X, Chen S, Zhang R. 2014. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal. Environ Sci Pollut Res Int. 21(1):781–786.
  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A. 2011. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut. 159(10):2675–2683.
  • Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197(1–4):23–34.
  • Zohair A, Salim AB, Soyibo AA, Beck AJ. 2006. Residues of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically farmed vegetables. Chemosphere. 63(4):541–553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.