169
Views
14
CrossRef citations to date
0
Altmetric
Articles

Calcium signaling confers nickel tolerance in Cucurbita pepo L.

&

References

  • Abd_Allah EF, Hashem A, Alqarawi AA, Wirth S, Egamberdieva D. 2017. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J Plant Interact. 12(1):237–243. doi:10.1080/17429145.2017.1319500.
  • Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. 2016. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed Chickpea (Cicer arietinum L.). Front Plant Sci. 7:513. doi:10.3389/fpls.2016.00513.
  • Amooaghaie R, Moghym S. 2011. Effect of polyamines on thermotolerance and membrane stability of soybean seedling. Afr J Biotechnol. 10(47):9673–9679. doi:10.5897/AJB10.2446.
  • Amooaghaie R, Zangene-Madar F, Enteshari S. 2017. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environ Saf. 139:210–218. doi:10.1016/j.ecoenv.2017.01.037.
  • Aziz H, Sabir M, Ahmad HR, Aziz T, Zia-Ur-Rehman M, Hakeem KR, Ozturk M. 2015. Alleviating effect of calcium on nickel toxicity in rice. Clean Soil Air Water. 43 (6):901–966. doi:10.1002/clen.201400085.
  • Bates L, Waldren R, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • DalCorso G, Fasani E, Manara A, Visioli G, Furin A. 2019. Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. 20(14):3412. doi:10.3390/ijms20143412.
  • Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. 2017. The evolution of calcium-based signalling in plants. Curr Biol. 27(13):R667–R679. doi:10.1016/j.cub.2017.05.020.
  • Fang H, Jing T, Liu Z, Zhang L, Jin Z, Pei Y. 2014. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium. 56(6):472–481. doi:10.1016/j.ceca.2014.10.004.
  • Farzadfar S, Zarinkamar F, Modarres-Sanavy SA, Hojati M. 2013. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res Int. 20(3):1413–1422. doi:10.1007/s11356-012-1181-9.
  • Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X. 2016. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in (Boehmeria nivea L.) Gaudich. Environ Sci Pollut Res Int. 23(9):8699–8708. doi:10.1007/s11356-016-6122-6.
  • González A, Cabrera M. d L Á, Henríquez MJ, Contreras RA, Morales B, Moenne A. 2012. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol. 158(3):1451–1462. doi:10.1104/pp.111.191759.
  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA. 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities-a review. Environ Sci Pollut Res Int. 26(13):12673–12688. doi:10.1007/s11356-019-04892-x.
  • He S, He Z, Yang X, Baligar VC. 2012. Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv Agron. 117:117–189.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Heidari J, Amooaghaie R, Kiani S. 2020. Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula tripterocarpa. Int J Phytoremediation. doi:10.1080/15226514.2020.1748564.
  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, et al. 2017. Effects of calcium at toxic concentrations of cadmium in plants. Planta. 245(5):863–873. doi:10.1007/s00425-017-2664-1.
  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. 2018. Traversing the links between heavy metal stress and plant signaling. Front Plant Sci. 9:12. doi:10.3389/fpls.2018.00012.
  • Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plant. 59(4):609–619. doi:10.1007/s10535-015-0549-3.
  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. 2017a. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation. 19(9):813–824. 10.1080/15226514.2017.1290580.
  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A. 2017b. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. Int J Phytoremediation. 19(5):470–477. doi:10.1080/15226514.2016.1244167.
  • Li H, Cheng Z. 2015. Hoagland nutrient solution promotes the growth of cucumber seedlings under light-emitting diode light. Acta Agric Scand Sect B–Soil Plant Sci. 65(1):74–82. doi:10.1080/09064710.2014.967285.
  • Li P, Zhao CZ, Zhang YQ, Wang X, Wang X, Wang JF, Wang F, Bi Y. 2016. Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma. 253(1):185–200. doi:10.1007/s00709-015-0810-9.
  • Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.
  • Matraszek R. 2003. Changes of root physiological indices depending on Ni and Ca content in the substrate. Electron J Pol Agric Univ. 6(5). http://www.ejpau.media.pl/.
  • Matraszek R, Hawrylak-Nowak B. 2010. Growth and mineral composition of nickel-stressed plants under conditions of supplementation with excessive amounts of calcium and iron. J Toxicol Environ Health Part A. 73(17–18):1260–1273. doi:10.1080/15287394.2010.492015.
  • Mozafari H, Asrar Z, Rezanejad F, Pourseyedi SH, Yaghoobi MMOL.L-1. 2013. Calcium and L-histidine interaction on growth improvement of three tomato cultivars under nickel stress. Acta Biologica Szegediensis. 57:131–144.
  • Mukta RH, Khatun MR, Nazmul Huda AKM. 2019. Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). J Plant Interact. 14(1):295–302. doi:10.1080/17429145.2019.1629034.
  • Nabaei M, Amooaghaie R. 2020. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in (Catharanthus roseus L.) G. Don. Environ Sci Pollut Res. 27(7):6981–6994. doi:10.1007/s11356-019-07283-4.
  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF. 2015. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci. 6:133. 10.3389/fpls.2015.00133.
  • Ramel F, Mialoundama AS, Havaux M. 2013. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot. 64(3):799–805. doi:10.1093/jxb/ers223.
  • Rizwan M, Imtiaz M, Dai Z, Mehmood S, Adeel M, Liu J, Tu S. 2017. Nickel stressed responses of rice in Ni subcellular distribution, antioxidant production, and osmolyte accumulation. Environ Sci Pollut Res Int. 24(25):20587–22059. doi:10.1007/s11356-017-9665-2.
  • Rodriguez-Hernandez MC, Bonifas I, Alfaro-De la Torre MC, Flores-Flores JL, Bañuelos-Hernández B, Patiño-Rodríguez O. 2015. Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: a study of two pore channel (TPC1) gene responses. Environ Exp Bot. 115:38–48. doi:10.1016/j.envexpbot.2015.02.009.
  • Rucinska-Sobkowiak R. 2016. Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant. 38:257–270.
  • Shang X, Xue W, Jiang Y, Zou J. 2020. Effects of calcium on the alleviation of cadmium toxicity in Salix matsudana and its effects on other minerals. Pol J Environ Stud. 29(2):2001–2010. doi:10.15244/pjoes/109720.
  • Sharma A, Dhiman A. 2013. Nickel and cadmium toxicity in plants. J Pharm Sci Innov. 2(2):20–24. doi:10.7897/2277-4572.02213.
  • Siddiqui MH, Al-Whaibi MH, Basalah MO. 2011. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L.). Protoplasma. 248(3):503–511. doi:10.1007/s00709-010-0197-6.
  • Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM. 2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. Under cadmium stress. Int J Mol Sci. 13(6):6604–6619. doi:10.3390/ijms13066604.
  • Singh HP, Batish DR, Kohli RK, Arora K. 2007. Arsenic-induced root growth inhibition in mung bean Phaseolus aureus Roxb. is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53(1):65–73. doi:10.1007/s10725-007-9205-z.
  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS. 2015. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma. 252(4):959–975. doi:10.1007/s00709-014-0731-z.
  • Thor K. 2015. Calcium-nutrient and messenger. Front Plant Sci. doi:10.3389/fpls.2015.00133.
  • Tian S, Lu L, Zhang J, Wang K, Brown PH, He Z, Liang J, Yang X. 2011. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere. 84(1):63–69. doi:10.1016/j.chemosphere.2011.02.054.
  • Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanadian M, Talebi M, Ghanati F. 2020a. Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. Phytochemistry. 177:112422. doi:10.1016/j.phytochem.2020.112422.
  • Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanati F, Sajedi RH. 2020b. Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J Plant Physiol. 252 (2020):153237doi:10.1016/j.jplph.2020.153237.
  • Valivand M, Amooaghaie R. 2020. Sodium hydrosulfide modulates membrane integrity, cation homeostasis, and accumulation of phenolics and osmolytes in zucchini under nickel stress. Plant Grow Regul. doi:10.1007/s00344-020-10101-8.
  • Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, Li Y, Zhu X. 2020. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One. 15(3):e0228563. doi:10.1371/journal.pone.0228563.
  • Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmad A, Waheed Akram W. 2018. Effect of Enterobacter sp. CS2 and EDTA on the phytoremediation of Ni-contaminated Soil by Impatiens balsamina. Pol J Environ Stud. 28(1):425–433. doi:10.15244/pjoes/76179.
  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol. 86(1):1–17. doi:10.1007/s00128-010-0171-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.