233
Views
8
CrossRef citations to date
0
Altmetric
Articles

Native aquatic plants for phytoremediation of metals in outdoor experiments: implications of metal accumulation mechanisms, Soran City-Erbil, Iraq

ORCID Icon &

References

  • Ahmed M, Matsumoto M, Ozaki A, Thinh N, Kurosawa K. 2019. Heavy metal contamination of irrigation water, soil, and vegetables and the difference between dry and wet seasons near a multi-industry zone in. Bangladesh Water. 11(3):583–594. ‏ doi:10.3390/w11030583.
  • Bolisetty S, Peydayesh M, Mezzenga R. 2019. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev. 48(2):463–487. ‏ doi:10.1039/c8cs00493e.
  • Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, Oller AR. 2019. Concise review of nickel human health toxicology and ecotoxicology. Inorganics. 7(7):89–126. doi:10.3390/inorganics7070089.
  • Chanpiwat P, Sthiannopkao S, Kim KW. 2010. Metal content variation in wastewater and biosludge from Bangkok’s central wastewater treatment plants. Microchem J. 95(2):326–332. doi:10.1016/j.microc.2010.01.013.
  • Dabonne S, Koffi B, Kouadio E, Koffi A, Due E, Kouame L. 2010. Traditional utensils: potential sources of poisoning by heavy metals. Br J Pharmacol Toxicol. 1(2):90–92.
  • Duman F, Leblebici Z, Aksoy A. 2009. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chem Speciation Bioavailability. 21(4):257–265. doi:10.3184/095422909X12578511366924.
  • Ebrahimbabaie P, Meeinkuirt W, Pichtel J. 2020. Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci. ‏93(2020):151–163. doi:10.1016/j.jes.2020.03.034.
  • El-Amier YA, Alghanem SM, Alzuaibr FM. 2017. Bioaccumulation and translocation of heavy metals from coastal soil by Wild Halophytes. Am J Env Pro. 5(2):52–60.
  • Food and Agriculture Organization [FAO]. 2014. Wastewater treatment and use in agriculture. Roma; Italy: FAO United Nations.
  • Ganjo DGA, Gaf TA. 2012. Lead, nickel and copper concentration and related factors in some uncooked vegetables irrigated by wastewater. J Adv Lab Res Biol. 3(3):221–228.
  • Ganjo DGA, Khwakaram AI. 2010. Phytoremediation of wastewater using some of aquatic macrophytes as biological purifiers for irrigation purposes. Int J Environ Ecolog Eng. 4(6):222–245.
  • Ishaq F, Khan A. 2013. Heavy metal analysis of river Yamuna and their relation with some physico-chemical parameters. Global J Environ Res. 7(2):34–39.
  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res Int. 22(18):13772–13799. doi:10.1007/s11356-015-4881-0.
  • Kumar A, Maiti SK. 2015. Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of chromite-asbestos mine waste: a pot scale experiment. Int J Phytoremediation. 17(1–6):437–447. doi:10.1080/15226514.2014.910174.
  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A. 2015. Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol. 05(08):375–388.‏ doi:10.4236/oje.2015.58031.
  • Liu L, Utiyama M, Finch A, Sumita E. 2016. Agreement on target-bidirectional neural machine translation. Presented in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics; San Diego, CA./USA.
  • Lu Y, Li X, He M, Zeng F, Li X. 2017. Accumulation of heavy metals in native plants growing on mining-influenced sites in Jinchang: a typical industrial city (China). Environ Earth Sci. 76(13):446–460. doi:10.1007/s12665-017-6779-2.
  • Maiti SK, Jaiswal S. 2007. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess. 136(1–3):355–370. doi:10.1007/s10661-007-9691-5.
  • Masoumi F, Khadivinia E, Alidoust L, Mansourinejad Z, Shahryari S, Safaei M, Mousavi A, Salmanian A-H, Zahiri H S, Vali H, et al. 2016. Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran. J Environ Chem Eng. 4(1):950–957. doi:10.1016/j.jece.2015.12.025.
  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P. 2016. Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. Science Asia. 42(2):83–91. doi:10.2306/scienceasia1513-1874.2016.42.083.
  • Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S. 2015. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot. 66(3):1001–1015. ‏‏ doi:10.1093/jxb/eru459.
  • Mihaylova V, Lyubomirova V, Djingova R. 2013. Optimization of sample preparation and ICP-MS analysis for determination of 60 elements for characterization of the plant ionome. Int J Environ Analyt Chem. 93(13):1441–1456. doi:10.1080/03067319.2012.736978.
  • Mishra AR, Rani P, Mardani A, Pardasani KR, Govindan K, Alrasheedi M. 2020. Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput Ind Eng. 139(2020):106–140.
  • Mishra S, Maiti A. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 24(9):7921–7937. ‏ doi:10.1007/s11356-016-8357-7.
  • Mishra T, Pandey VC. 2019. Phytoremediation of red mud deposits through natural succession. In: Pandey V C, Bauddh K, editors. Phytomanagement Polluted Sites. Chennai (ITP./ India): Elsevier. p. 409–424. 10.1016/B978-0-12-813912-7.00016-8.
  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett. 16(4):1339–1359. doi:10.1007/s10311-018-0762-3.
  • Odinga CA, Swalaha FM, Otieno FAO, Ranjith KR, Bux F. 2013. Investigating the capacity of constructed wetlands in the removal of heavy metals and enteric pathogens from wastewater. Environ Technol Rev. 2(1):1–16. doi:10.1080/21622515.2013.865086.
  • Qi L, Zhao W. 2019. Strontium uptake and antioxidant efficiency comparisons of low accumulator and high accumulator oat (Avena sativa L.) genotypes. Int J Phytorem. 4(6):1–9.
  • Raj D, Kumar A, Maiti SK. 2020. Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytoremediation. 22(7):733–744. doi:10.1080/15226514.2019.1708861.
  • Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P. 2017. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res. 24(18):15756–15767. ‏ doi:10.1007/s11356-017-9157-4.
  • Schober P, Boer C, Schwarte LA. 2018. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 126(5):1763–1768. doi:10.1213/ANE.0000000000002864.
  • Schück M, Greger M. 2020. Screening the capacity of 34 wetland plant species to remove heavy metals from water. Int J Env Res Pub He. 17(13):4623–4634. doi:10.3390/ijerph17134623.
  • Shao JF, Fujii-Kashino M, Yamaji N, Fukuoka S, Shen RF, Ma JF. 2017. Isolation and characterization of a rice line with high Cd accumulation for potential use in phytoremediation. Plant Soil. 410(1–2):357–368. ‏ doi:10.1007/s11104-016-3014-y.
  • Shrestha P, Bellitürk K, Görres JH. 2019. Phytoremediation of heavy metal-contaminated soil by switchgrass: a comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int J Env Res Pub He. 16(7):1261–1275. doi:10.3390/ijerph16071261.
  • Singh N, Kaur M, Katnoria JK. 2017. Analysis on bioaccumulation of metals in aquatic environment of Beas River Basin: a case study from Kanjli wetland. Geohealth. 1(3):93–105. ‏ doi:10.1002/2017GH000062.
  • Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P. 2018b. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res Int. 25(6):5344–5358. ‏ doi:10.1007/s11356-017-0813-5.
  • Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P. 2018a. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res. 25(15):14964–14976. ‏ doi:10.1007/s11356-018-1714-y.
  • Turek A, Wieczorek K, Wolf WM. 2019. Digestion procedure and determination of heavy metals in sewage sludge – an analytical problem. Sustainability. 11(6):1753–1762. doi:10.3390/su11061753.
  • Verma R, Suthar S. 2015. Lead and cadmium removal from water using duckweed–Lemna gibba L.: Impact of pH and initial metal load. Alex Eng J. 54(4):1297–1304. ‏ doi:10.1016/j.aej.2015.09.014.
  • Yadav KK, Gupta N, Kumar V, Choudhary P, Khan SA. 2018. GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: levels and spatial distributions. RSC Adv. 8(29):15876–15889. doi:10.1039/C8RA00577J.
  • Zurayk R, Sukkariyah B, Baalbaki R, Abi Ghanem D. 2002. Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut. 139(1/4):355–364. ‏ doi:10.1023/A:1015840601761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.