683
Views
26
CrossRef citations to date
0
Altmetric
Articles

Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil

, , , &

References

  • Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. 2016. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). Front Plant Sci. 7:513. doi:10.3389/fpls.2016.00513.
  • Ali H, Khan E, Sajad M. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Bădescu IS, Bulgariu D, Bulgariu L. 2017. Alternative utilization of algal biomass (Ulva sp.) loaded with Zn (II) ions for improving of soil quality. J Appl Phycol. 29(2):1069–1079.
  • Bashir S, Salam A, Chhajro MA, Fu Q, Khan MJ, Zhu J, Shaaban M, Kubar KA, Ali U, Hu H. 2018. Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. Int J Phytoremediation. 20(12):1221–1228. doi:10.1080/15226514.2018.1448364.
  • Bashir S, Shaaban M, Mehmood S, Zhu J, Fu QL, Hu HQ. 2018. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bull Environ Contam Toxicol. 100(6):834–838. doi:10.1007/s00128-018-2332-6.
  • Batty LC, Dolan C. 2013. The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit Rev Environ Sci Technol. 43(3):217–259.
  • Beesley L, Inneh O, Norton G, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut. 186:195–202. doi:10.1016/j.envpol.2013.11.026.
  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. 2011. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023.
  • Cao Y, Man C, Chen H, Zhang J, White JC, Chen G, Xing B. 2020. Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb. J Hazard Mater. 392:122428. doi:10.1016/j.jhazmat.2020.122428.
  • Cao YN, Ma CX, Chen GC, Zhang JF, Xing BS. 2017. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environ Pollut. 225:644–653. doi:10.1016/j.envpol.2017.03.040.
  • Cao YN, Zhang Y, Ma CX, Li HM, Zhang JF, Chen GC. 2018. Growth, physiological responses and copper accumulation in seven willow species exposed to Cu – a hydroponic experiment. Environ Sci Pollut Res. 20:19875–19886.
  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, et al. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol. 71:33–44.
  • Chen ZS, Lee GJ, Liu JC. 2000. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere. 41(1–2):235–242. doi:10.1016/s0045-6535(99)00416-6.
  • Chintala R, Schumacher TE, McDonald LM, Clay DE, Malo DD, Papiernik SK, Clay SA, Julson JL. 2013. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean-Soil Air Water. 41(9999):1–9.
  • Chirakkara RA, Reddy KR. 2015. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol Eng. 85:265–274.
  • Clemens S, Palmgren MG, Krämer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7(7):309–315.
  • Cloutier-Hurteau B, Turmel CM, Mercier C, Courchesne F. 2014. The sequestration of trace elements by willow (Salix purpurea)-which soil properties favor uptake and accumulation? Environ Sci Pollut Res Int. 21(6):4759–4771. doi:10.1007/s11356-013-2450-y.
  • Deenik JL, McClellan T, Uehara G, Antal MJ, Jr., Campbell S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J. 74(4):1259–1270.
  • Environmental Protection Agency. 2007. The use of soil amendments for remediation, soil amendments for remediation, revitalization and reuse. (US). [accessed 2019 Aug 10]. https://clu-in.org/download/remed/epa-542-r-07-013.pdf.
  • Garcı́a G, Faz Á, Cunha M. 2004. Performance of Piptatherum miliaceumn (Smilo grass) in edaphic zinc phytoremediation over a short growth period. Int Biodeter Biodegr. 54(2–3):245–250.
  • García-Ruiz R, Ochoa V, Belén Hinojosa M, Carreira JA. 2008. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol Biochem. 40(9):2137–2145.
  • Greger M, Landberg T. 1999. Use of willow in phytoextraction. Int J Phytorem. 1(2):115–123.
  • Guan SY. 1986. Soil enzyme and its study method. Beijing: China Agriculture Press. (in Chinese)
  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res Int. 22(2):1534–1544. doi:10.1007/s11356-014-3431-5.
  • Herath I, Kumarathilaka P, Navaratne A, Rajakaruna N, Vithanage M. 2015. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J Soils Sediments. 15(1):126–138.
  • Hooda P. 2010. Trace elements in soils. Chichester (UK): Wiley-Blackwell.
  • Hussain S, Akram M, Abbas G, Murtaza B, Shahid M, Shah NS, Bibi I, Niazi NK. 2017. Arsenic tolerance and phytoremediation potentialof Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation. 19(11):985–991. doi:10.1080/15226514.2017.1303815.
  • Jiang J, Xu RK, Jiang TY, Li Z. 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater. 229–230:145–150.
  • Jiang J, Xu RK. 2013. Application of crop straw derived biochars to Cu (II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu (II) immobilization. Bioresour Technol. 133:537–545.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. Boca Ratón (FL): CRC Press.
  • Kacálková L, Tlustoš P, Száková J. 2015. Phytoextraction of risk elements by willow and poplar Trees. Int J Phytoremediation. 17(1–6):414–421. doi:10.1080/15226514.2014.910171.
  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C. 2009. Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot. 67(1):243–259.
  • Kim H, Kim K, Kim H, Yoon J, Yang JE, Ok YS, Owens G, Kim K. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci. 74(2):1249–1259.
  • Kolton M, Meller HY, Pasternak Z, Graber ER, Elad Y, Cytryn E. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol. 77(14):4924–4930. doi:10.1128/AEM.00148-11.
  • Kumar NPBA, Dushenkov V, Motto H, Raskin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol. 29(5):1232–1238. doi:10.1021/es00005a014.
  • Kuzovkina YA, Knee M, Quigley MF. 2004. Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation. 6(3):269–287. doi:10.1080/16226510490496726.
  • Lebrun M, Macri C, Miard F, Hattab-Hambli N, Motelica-Heino M, Morabito D, Bourgerie S. 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochem Explor. 182:149–156.
  • Lebrun M, Miard F, Hattab‒Hambli N, Bourgerie S, Morabito D. 2018. Assisted phytoremediation of a multi-contaminated industrial soil using biochar and garden soil amendments associated with Salix alba or Salix viminalis: abilities to stabilize As. Pb, and Cu. Water Air, Soil Pollut. 229:163. doi:10.1007/s11270-018-3816-z.
  • Lebrun M, Miard F, Nandillon R, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D. 2017. Eco‒restoration of a mine technosol according to biochar particle size and dose application: study of soil physico‒chemical properties and phytostabilization capacities of Salix viminalis. J Soils Sediments. 18(6):2188–2202.
  • Lebrun M, Miard F, Nandillon R, Léger J-C, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D. 2018. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere. 194:316–326. doi:10.1016/j.chemosphere.2017.11.113.
  • Ledesma EB, Marsh ND, Sandrowitz AK, Wornat MJ. 2002. Global kinetic rate parameters for the formation of polycyclic aromatic hydrocarbons from the pyrolyis of catechol, a model compound representative of solid fuel moieties. Energy Fuels. 16(6):1331–1336.
  • Lefevre GH, Hozalski RM, Novak PJ. 2013. Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol. 47(20):11545–11553. doi:10.1021/es402446v.
  • Lehmann J, Silva JPD, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249(2):343–357. doi:10.1023/A:1022833116184.
  • Li G, Khan S, Ibrahim M, Sun TR, Tang JF, Cotner J, Xu YY. 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazrd Mater. 348:100–108.
  • Li H, Li Z, Khaliq MA, Xie TH, Chen YH, Wang G. 2019. Chlorine weaken the immobilization of Cd in soil-rice systems by biochar. Chemosphere. 235(11):1172–1179. doi:10.1016/j.chemosphere.2019.06.203.
  • Li X, Cao Y, Cai Z, Zhang J, Chen G. 2018. Heavy metal accumulation in four flooding-tolerant tree species grown in flooded soil. Fore Res. 31(3):29–36. (in Chinese)
  • Lu HP, Li ZA, Gascó G, Méndez A, Shen Y, Paz-Ferreiro J. 2018. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ. 622–623:892–899. doi:10.1016/j.scitotenv.2017.12.056.
  • Lu KP, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan GD, Chen X, Zhang XK, et al. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage. 186:285–292.
  • Lu RK. 2000. Analytical methods for soil agrochemistry. Beijing: Chinese Agricultural Science and Technology Publishing House. (in Chinese)
  • Madejón E, Burgos P, López R, Cabrera F. 2001. Soil enzymatic response to addition of heavy metals with organic residues. Biol Fert Soils. 34(3):144–150.
  • Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut. 132(1):21–27. doi:10.1016/j.envpol.2004.04.001.
  • Martens DC, Lindsay WL. 1990. Testing soils for copper, iron, manganese, and zinc. In: Westerman, R.L., editor. Soil testing and plant analysis. Madison (WI): Soil Science Society of America. p. 229–264.
  • McBride MB, Martinez CE, Kim B. 2016. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically. Int J Phytoremediation. 18(12):1178–1186. doi:10.1080/15226514.2016.1189401.
  • Ministry of Ecology and Environment. 2018. GB 15618-2018, Soil environmental quality-Risk control standard for soil contamination of agricultural land. Beijing: Standards Press of China. (in Chinese)
  • Mittra BN, Karmakar S, Swain DK, Ghosh BC. 2005. Fly ash – a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel. 84(11):1447–1451.
  • Morillo J, Usero J, Gracia I. 2004. Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere. 55(3):431–442. doi:10.1016/j.chemosphere.2003.10.047.
  • Murtaza G, Usman Y, Niazi NK, Usman M, Hussain T. 2017. Bioaccumulation of potentially toxic elements in cereal and legume crops: a review. Clean–Soil Air Water. doi:10.1002/clen.201700548.
  • Nie CR, Yang X, Niazi NK, Xu XY, Wen YH, Rinklebe J, Ok YS, Xu S, Wang HL. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere. 200:274–282.
  • Norini MP, Thouin H, Miard F, Battaglia-Brunet F, Gautret P, Guégan R, Forestier LL, Morabito D, Bourgerie S, Motelica-Heino M. 2019. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J Environ Manage. 232:117–130. doi:10.1016/j.jenvman.2018.11.021.
  • Ouyang XK, Jin RN, Yang LP, Wang YG, Yang LY. 2014. Bamboo derived porous bioadsorbents and their adsorption of Cd (II) from mixed aqueous solutions. RSC Adv. 4(54):28699–28706.
  • Pandey VC, Abhilash PC, Singh N. 2009. The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. J Environ Manage. 90(10):2943–2958. doi:10.1016/j.jenvman.2009.05.001.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int. 29(4):529–540. doi:10.1016/S0160-4120(02)00152-6.
  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils. 48(3):271–284.
  • Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Mehtätalo L, Pappinen A. 2016. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. J Environ Manage. 183(Pt 3):467–477. doi:10.1016/j.jenvman.2016.08.082.
  • Salam MMA, Mohsin M, Kaipiainen E, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Pappinen A. 2019. Biomass growth variation and phytoextraction potential of four Salix varieties grown in contaminated soil amended with lime and wood ash. Int J Phytoremediation. 21(13):1329–1340. doi:10.1080/15226514.2019.1633257.
  • Salam MMA, Mohsin M, Pulkkinen P, Pelkonen P, Pappinen A. 2019. Effects of soil amendments on the growth response and phytoextraction capability of a willow variety (S. viminalis × S. schwerinii × S. dasyclados) grown in contaminated soils. Ecotoxicol Environ Saf. 171:753–770. doi:10.1016/j.ecoenv.2019.01.045.
  • Schmidt MWI, Noack AG. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles. 14(3):777–793.
  • Shen RF, Ma JF. 2001. Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot. 52:1683–1687.
  • Tong X, Li J, Yuan J, Xu R. 2011. Adsorption of Cu (II) by biochars generated from three crop straws. Chem Eng J. 172(2–3):828–834.
  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S. 2016. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manage. 179:93–102. doi:10.1016/j.jenvman.2016.04.055.
  • Wang SY, Tsai MH, Lo SF, Tsai MJ. 2008. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour Technol. 99(15):7027–7033. doi:10.1016/j.biortech.2008.01.014.
  • Wang W, Wu Y, Akbar S, Jia X, He Z, Tian X. 2016. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. Int J Phytoremediation. 18(8):761–767. doi:10.1080/15226514.2015.1131237.
  • Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safe. 67(1):75–81. doi:10.1016/j.ecoenv.2006.03.007.
  • Xu X, Yang B, Qin G, Wang H, Zhu Y, Zhang K, Yang H. 2019. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture. Environ Sci Pollut Res Int. 26(19):19770–19784. doi:10.1007/s11356-019-05331-7.
  • Yang X, Liu J, McGrouther K, Huang HG, Lu KP, Guo X, He LZ, Lin XM, Che L, Ye ZQ, et al. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res. 23(2):974–984. doi:10.1007/s11356-015-4233-0.
  • Yasin NA, Zaheer MM, Khan WU, Ahmad SR, Ahmad A, Ali A, Akram W. 2018. The beneficial role of potassium in Cd–induced stress alleviation and growth improvement in Gladiolus grandiflora L. Int J Phytorem. 20(3):274–283. doi:10.1080/15226514.2017.1374337.
  • Zhang H, Zhang YL, Wang ZF, Ding MJ, Jiang YH, Xie ZL. 2016. Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China. Sci Total Environ. 573:915–923. doi:10.1016/j.scitotenv.2016.08.128.
  • Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 327(1–2):235–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.