180
Views
4
CrossRef citations to date
0
Altmetric
Articles

Foliar uptake and transport of atmospheric trace metals bounded on particulate matters in epiphytic Tillandsia brachycaulos

, , &

References

  • Amado Filho GM, Andrade LR, Farina M, Malm O. 2002. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor. Atmos Environ. 36(5):881–887. doi:10.1016/S1352-2310(01)00496-4.
  • Benz BW, Martin CE. 2006. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol. 163(6):648–656. doi:10.1016/j.jplph.2005.05.008.
  • Benzing DH. 2000. Bromeliaceae: profile of an adaptive radiation. Cambridge: Cambridge University Press.
  • Bothe H, Słomka A. 2017. Divergent biology of facultative heavy metal plants. J Plant Physiol. 219:45–61. doi:10.1016/j.jplph.2017.08.014.
  • Carginale V, Sorbo S, Capasso C, Trinchella F, Cafiero G, Basile A. 2004. Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma. 223(1):53–61. doi:10.1007/s00709-003-0028-0.
  • Clemens S, Palmgren MG, Krämer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7(7):309–315. doi:10.1016/s1360-1385(02)02295-1.
  • Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO. 2019. Waste production in aquaculture: sources, components and managements in different culture systems. Aquacult Fish. 4(3):81–88. doi:10.1016/j.aaf.2018.10.002.
  • de Souza Pereira M, Heitmann D, Reifenhäuser W, Meire RO, Santos LS, Torres JPM, Malm O, Körner W. 2007. Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, southeast Brazil-Part II: PCB and PAH. Chemosphere. 67(9):1736–1745. doi:10.1016/j.chemosphere.2006.05.141.
  • de Souza Pereira M, Waller U, Reifenhäuser W, Torres JPM, Malm O, Körner W. 2007. Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, south east Brazil-Part I: PCDD and PCDF. Chemosphere. 67(9):1728–1735. doi:10.1016/j.chemosphere.2006.05.145.
  • Fernandez V, Eichert T. 2009. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci. 28(1–2):36–68. doi:10.1080/07352680902743069.
  • Figueiredo AMG, Nogueira CA, Saiki M, Milian FM, Domingos M. 2007. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ Pollut. 145(1):279–292. doi:10.1016/j.envpol.2006.03.010.
  • Frey B, Keller C, Zierold K. 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 23(7):675–687. doi:10.1046/j.1365-3040.2000.00590.x.
  • Gajbhiye T, Pandey SK, Kim K-H, Szulejko JE, Prasad S. 2016. Airborne foliar transfer of PM bound heavy metals in Cassia siamea: a less common route of heavy metal accumulation. Sci Total Environ. 573:123–130. doi:10.1016/j.scitotenv.2016.08.099.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdis Toxico. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • Kim JJ, Park J, Jung SY, Lee SJ. 2020. Effect of trichome structure of Tillandsia usneoides on deposition of particulate matter under flow conditions. J Hazard Mater. 393:122401. doi:10.1016/j.jhazmat.2020.122401.
  • Kinnersley R, Scott L. 2001. Aerial contamination of fruit through wet deposition and particulate dry deposition. J Environ Radioact. 52(2–3):191–213. doi:10.1016/s0265-931x(00)00033-3.
  • Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN. 2000. Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environ Pollut. 107(3):413–420. doi:10.1016/S0269-7491(99)00159-1.
  • Kramer EM, Frazer NL, Baskin TI. 2007. Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. J Experi Bot. 58(11):3005–3015. doi:10.1093/jxb/erm155.
  • Leonard RJ, Mcarthur C, Hochuli DF. 2016. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban for Urban Gree. 20:249–253. doi:10.1016/j.ufug.2016.09.008.
  • Li P, Pemberton R, Zheng GL. 2015. Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution. Chemosphere. 119:662–667. doi:10.1016/j.chemosphere.2014.07.079.
  • Li P, Sun X, Cheng J, Zheng G. 2019. Absorption of the natural radioactive gas 222Rn and its progeny 210Pb by Spanish moss Tillandsia usneoides and its response to radiation. Environ Exp Bot. 158:22–27. doi:10.1016/j.envexpbot.2018.11.004.
  • Li P, Zheng G, Chen X, Pemberton R. 2012. Potential of monitoring nuclides with the epiphyte Tillandsia usneoides: uptake and localization of 133Cs. Ecotoxicol Environ Saf. 86:60–65. doi:10.1016/j.ecoenv.2012.08.002.
  • Mo L, Ma Z, Xu Y, Sun F, Lun X, Liu X, Chen J, Yu X. 2015. Assessing the capacity of plant species to accumulate particulate matter in Beijing. PLoS One. 10(10):e0140664. doi:10.1371/journal.pone.0140664.
  • Natasha Shahid M, Khalid S. 2020. Foliar application of lead and arsenic solutions to Spinacia oleracea: biophysiochemical analysis and risk assessment. Environ Pollu Res. 1–11. doi:10.1007/s11356-019-06519-7.
  • Ohrui T, Nobira H, Sakata Y, Taji T, Yamamoto C, Nishida K, Yamakawa T, Sasuga Y, Yaguchi Y, Takenaga H, et al. 2007. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta. 227(1):47–56. doi:10.1007/s00425-007-0593-0.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 213:113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Sánchez-Chardi A. 2016. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmos Environ. 131:352–359. doi:10.1016/j.atmosenv.2016.02.013.
  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C. 2014. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ. 476–477:667–676. doi:10.1016/j.scitotenv.2013.12.089.
  • Schreck E, Viers J, Blondet I, Auda Y, Macouin M, Zouiten C, Freydier R, Dufréchou G, Chmeleff J, Darrozes J. 2020. Tillandsia usneoides as biomonitors of trace elements contents in the atmosphere of the mining district of Cartagena-La Unión (Spain): new insights for element transfer and pollution source tracing. Chemosphere. 241:124955. doi:10.1016/j.chemosphere.2019.124955.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Sharma P, Yadav P, Ghosh C, Singh B. 2020. Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere. 254:126863. doi:10.1016/j.chemosphere.2020.126863.
  • Sun J, Luo L. 2018. Subcellular distribution and chemical forms of Pb in corn: strategies underlying tolerance in Pb stress. J Agric Food Chem. 66(26):6675–6682. doi:10.1021/acs.jafc.7b03605.
  • Tabatabaei T, Karbassi AR, Moatar F, Monavari SM. 2015. Geospatial patterns and background levels of heavy metal in deposited particulate matter in Bushehr. Arab J Geosci. 8(4):2081–2093. doi:10.1007/s12517-013-1241-6.
  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol. 44(3):1036–1042. doi:10.1021/es902190u.
  • Vianna NA, Gonçalves D, Brandão F, de Barros RP, Filho GMA, Meire RO, Torres JPM, Malm O, Júnior AD, Andrade LR. 2011. Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environ Sci Pollut Res. 18(3):416–427. doi:10.1007/s11356-010-0387-y.
  • Wannaz ED, Carreras HA, Pérez CA, Pignata ML. 2006. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci Total Environ. 361(1–3):267–278. doi:10.1016/j.scitotenv.2005.11.005.
  • Xiong T-T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C. 2014. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health. 36(5):897–909. doi:10.1007/s10653-014-9607-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.