1,922
Views
7
CrossRef citations to date
0
Altmetric
Review

Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review

& ORCID Icon

References

  • Abbas A, Azeem M, Naveed M, Latif A, Bashir S, Ali A, Bilal M, Ali L. 2020. Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int J Phytoremediation. 22(1):52–61. doi:10.1080/15226514.2019.1644286.
  • Abdin Y, Usman A, Ok YS, Tsang YF, Al-Wabel M. 2020. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: contrasting effects of mesquite and fishbone biochars. Environ Res. 181:108846. doi:10.1016/j.envres.2019.108846.
  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99:19–33. doi:10.1016/j.chemosphere.2013.10.071.
  • Ali A, Guo D, Zhang Y, Sun X, Jiang S, Guo Z, Huang H, Liang W, Li R, Zhang Z. 2017. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Sci Rep. 7:1–12. doi:10.1038/s41598-017-03045-9.
  • Álvarez ML, Méndez A, Paz-Ferreiro J, Gascó G. 2020. Effects of manure waste biochars in mining soils. Appli Sc. 10(10):3393. doi:10.3390/app10103393.
  • Álvarez-Rogel J, Tercero Gómez M, del C, Conesa HM, Párraga-Aguado I, González-Alcaraz MN. 2018. Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions. J Environ Manage. 223:554–565. doi:10.1016/j.jenvman.2018.06.055.
  • Al-Wabel MI, Hussain Q, Usman ARA, Ahmad M, Abduljabbar A, Sallam AS, Ok YS. 2018. Impact of biochar properties on soil conditions and agricultural sustainability: a review. Land Degrad Dev. 29(7):2124–2161. doi:10.1002/ldr.2829.
  • Anawar HM, Akter F, Solaiman ZM, Strezov V. 2015. Biochar: an emerging panacea for remediation of soil contaminants from mining, industry and sewage wastes. Pedosphere. 25(5):654–665. doi:10.1016/S1002-0160(15)30046-1.
  • Angin D, Sensöz S. 2014. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Int J Phytoremediation. 16(7–12):684–693. doi:10.1080/15226514.2013.856842.
  • Bashir S, Rehman M, Yousaf M, Salam A, Gulshan AB, Iqbal J, Aziz I, Azeem M, Rukh S, Asghar RMA. 2019. Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil. Int J Phytoremediation. 21(11):1098–1103. doi:10.1080/15226514.2019.1606781.
  • Beesley L, Dickinson N. 2011. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem. 43(1):188–196. doi:10.1016/j.soilbio.2010.09.035.
  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut. 186:195–202. doi:10.1016/j.envpol.2013.11.026.
  • Benhabylès L, Djebbar R, Miard F, Nandillon R, Morabito D, Bourgerie S. 2020. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ Sci Pollut Res. doi:10.1007/s11356-020-08833-x.
  • Cao X, Harris W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol. 101(14):5222–5228. doi:10.1016/j.biortech.2010.02.052.
  • Chen D, Liu X, Bian R, Cheng K, Zhang X, Zheng J, Joseph S, Crowley D, Pan G, Li L. 2018. Effects of biochar on availability and plant uptake of heavy metals – a meta-analysis. J Environ Manage. 222:76–85. doi:10.1016/j.jenvman.2018.05.004.
  • Clemente R, Almela C, Bernal MP. 2006. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut. 143(3):397–406. doi:10.1016/j.envpol.2005.12.011.
  • Coelho MS, Barbosa FG, Souza M, da RAZ d. 2014. The scientometric research on macroalgal biomass as a source of biofuel feedstock. Algal Res. 6:132–138. doi:10.1016/j.algal.2014.11.001.
  • Dai S, Li H, Yang Z, Dai M, Dong X, Ge X, Sun M, Shi L. 2018. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum Ecol Risk Assess. 24(7):1887–1900. doi:10.1080/10807039.2018.1429250.
  • de Souza ES, Dias YN, da Costa HSC, Pinto DA, de Oliveira DM, de Souza Falção NP, Teixeira RA, Fernandes AR. 2019. Organic residues and biochar to immobilize potentially toxic elements in soil from a gold mine in the Amazon. Ecotoxicol Environ Saf. 169:425–434. doi:10.1016/j.ecoenv.2018.11.032.
  • Dickinson D, Balduccio L, Buysse J, Ronsse F, van Huylenbroeck G, Prins W. 2015. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy. 7(4):850–864. doi:10.1111/gcbb.12180.
  • El-Naggar A, Shaheen SM, Ok YS, Rinklebe J. 2018. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Sci Total Environ. 624:1059–1071. doi:10.1016/j.scitotenv.2017.12.190.
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol. 114:644–653. doi:10.1016/j.biortech.2012.03.022.
  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere. 83(9):1262–1267. doi:10.1016/j.chemosphere.2011.03.053.
  • Fellet G, Marmiroli M, Marchiol L. 2014. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ. 468–469:598–608. doi:10.1016/j.scitotenv.2013.08.072.
  • Forján R, Asensio V, Rodríguez-Vila A, Covelo EF. 2016. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena. 137:120–125. doi:10.1016/j.catena.2015.09.010.
  • Forján R, Rodríguez-Vila A, Cerqueira B, Covelo EF. 2017. Comparison of the effects of compost versus compost and biochar on the recovery of a mine soil by improving the nutrient content. J Geochem Explor. 183:46–57. doi:10.1016/j.gexplo.2017.09.013.
  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K. 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol. 44(1):109–121. doi:10.1016/j.ejsobi.2007.09.002.
  • Gascó G, Álvarez ML, Paz-Ferreiro J, Méndez A. 2019. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere. 231:562–570. doi:10.1016/j.chemosphere.2019.05.168.
  • Gholami L, Rahimi G, Khademi Jolgeh Nezhad A. 2020. Effect of thiourea-modified biochar on adsorption and fractionation of cadmium and lead in contaminated acidic soil. Int J Phytoremediation. 22(5):468–481. doi:10.1080/15226514.2019.1678108.
  • Ghosh D, Maiti SK. 2020. Can biochar reclaim coal mine spoil? J Environ Manage. 272:111097. doi:10.1016/j.jenvman.2020.111097.
  • Ghosh D, Masto RE, Maiti SK. 2020. Ameliorative effect of Lantana biochar on coal mine spoil and growth of maize (Zea mays). Soil use manage. 36:726–739. doi:10.1111/sum.12626.
  • Gomes MVT, de Souza RR, Teles VS, Araújo Mendes É. 2014. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. 103:228–233. doi:10.1016/j.chemosphere.2013.11.071.
  • Gong X, Huang D, Liu Y, Zeng G, Chen S, Wang R, Xu P, Cheng M, Zhang C, Xue W. 2019. Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity. Sci Total Environ. 666:1126–1133. doi:10.1016/j.scitotenv.2019.02.215.
  • Gonzaga MIS, Matias MI, de AS, Andrade KR, Jesus AN, de Cunha G, da C, Andrade RS, de Santos JC. d J. 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere. 240:124828. doi:10.1016/j.chemosphere.2019.124828.
  • González-Chávez M, del CA, Carrillo-González R, Hernández Godínez MI, Evangelista Lozano S. 2017. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. Int J Phytoremediation. 19(2):174–182. doi:10.1080/15226514.2016.1207602.
  • Guo B, Liang Y, Fu Q, Ding N, Liu C, Lin Y, Li H, Li N. 2012. Cadmium stabilization with nursery stocks through transplantation: a new approach to phytoremediation. J Hazard Mater. 199-200:233–239. doi:10.1016/j.jhazmat.2011.11.001.
  • Gu J, Yao J, Duran R, Sunahara G, Zhou X. 2020. Alteration of mixture toxicity in nonferrous metal mine tailings treated by biochar. J Environ Manage. 265:110511. doi:10.1016/j.jenvman.2020.110511.
  • Gu J, Yao J, Jordan G, Roha B, Min N, Li H, Lu C. 2020. Arundo donax L. stem-derived biochar increases As and Sb toxicities from nonferrous metal mine tailings. Environ Sci Pollut Res Int. 27(3):2433–2443. doi:10.1007/s11356-018-2780-x.
  • He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. 2019. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut. 252(Pt A):846–855. doi:10.1016/j.envpol.2019.05.151.
  • Hodgson E, Lewys-James A, Rao Ravella S, Thomas-Jones S, Perkins W, Gallagher J. 2016. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks. Bioresour Technol. 214:574–581. doi:10.1016/j.biortech.2016.05.009.
  • Hu YL, Mgelwa AS, Singh AN, Zeng DH. 2018. Differential responses of the soil nutrient status, biomass production, and nutrient uptake for three plant species to organic amendments of placer gold mine-tailing soils. Land Degrad Dev. 29(9):2836–2845. doi:10.1002/ldr.3002.
  • Huang L, Li Y, Zhao M, Chao Y, Qiu R, Yang Y, Wang S. 2018. Potential of Cassia alata L. Coupled with biochar for heavy metal stabilization in multi-metal mine tailings. IJERPH. 15(3):494. doi:10.3390/ijerph15030494.
  • Jain S, Khare P, Mishra D, Shanker K, Singh P, Singh RP, Das P, Yadav R, Saikia BK, Baruah BP. 2020. Biochar aided aromatic grass [Cymbopogon martini (Roxb.) Wats.] vegetation: a sustainable method for stabilization of highly acidic mine waste. J. Hazard. Mater. 390:121799. doi:10.1016/j.jhazmat.2019.121799.
  • Jain S, Singh A, Khare P, Chanda D, Mishra D, Shanker K, Karak T. 2017. Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils. Ecol. Eng. 108:211–219. doi:10.1016/j.ecoleng.2017.08.039.
  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191(1–3):41–48. doi:10.1016/j.jhazmat.2011.04.025.
  • Kersten G, Majestic B, Quigley M. 2017. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf. 137:225–232. doi:10.1016/j.ecoenv.2016.12.001.
  • Khan AZ, Khan S, Khan MA, Alam M, Ayaz T. 2020. Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environ Technol Innov. 17:100590. doi:10.1016/j.eti.2019.100590.
  • Kiran BR, Prasad MNV. 2019. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf. 183:109574. doi:10.1016/j.ecoenv.2019.109574.
  • Kovacs H, Szemmelveisz K. 2017. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands – a review. Chemosphere. 166:8–20. doi:10.1016/j.chemosphere.2016.09.076.
  • Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA. 2013. Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng. 55:67–72. doi:10.1016/j.ecoleng.2013.02.011.
  • Lahori AH, Zhang Z, Shaheen SM, Rinklebe J, Guo Z, Li R, Mahar A, Wang Z, Ren C, Mi S, et al. 2019. Mono-and co-applications of Ca-bentonite with zeolite, Ca-hydroxide, and tobacco biochar affect phytoavailability and uptake of copper and lead in a gold mine-polluted soil. J Hazard Mater. 374:401–411. doi:10.1016/j.jhazmat.2019.04.057.
  • Lahori AH, Zhanyu GUO, Zhang Z, Ronghua LI, Mahar A, Awasthi MK, Feng SHEN, Sial TA, Kumbhar F, Ping WANG, et al. 2017. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: prospects and challenges. Pedosphere. 27(6):991–1014. doi:10.1016/S1002-0160.(17)60490-9.
  • Lebrun M, Macri C, Miard F, Hattab-Hambli N, Motelica-Heino M, Morabito D, Bourgerie S. 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochemical Explor. 182:149–156. doi:10.1016/j.gexplo.2016.11.016.
  • Lebrun M, Miard F, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D. 2020b. Effect of different tissue biochar amendments on As and Pb stabilization and phytoavailability in a contaminated mine technosol. Sci Total Environ. 707:135657. doi:10.1016/j.scitotenv.2019.135657.
  • Lebrun M, Miard F, Nandillon R, Léger JC, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D. 2018. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere. 194:316–326. doi:10.1016/j.chemosphere.2017.11.113.
  • Lebrun M, Nandillon R, Miard Le Forestier L, Morabito D, Bougerie S. 2020a. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Environ Geochem Health. doi:10.1007/s10653-020-00592-5.
  • Lebrun M, Van Poucke R, Miard F, Scippa GS, Bourgerie S, Morabito D, Tack FM. 2020c. Effects of carbon‐based materials and red muds on metal (loid) immobilization and growth of Salix dasyclados Wimm. on a former mine technosol contaminated by arsenic and lead. L Degrad Dev. doi:10.1002/ldr.3726.
  • Lehmann J, Kuzyakov Y, Pan G, Ok YS. 2015. Biochars and the plant-soil interface. Plant Soil. 395(1–2):1–5. doi:10.1007/s11104-015-2658-3.
  • Li X, Song Y, Wang F, Bian Y, Jiang X. 2019. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: a mechanistic study. J. Hazard. Mater. 364:325–331. doi:10.1016/j.jhazmat.2018.10.041.
  • Liang X, Chen L, Liu Z, Jin Y, He M, Zhao Z, Liu C, Niyungeko C, Arai Y. 2018. Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest. Land Degrad Dev. 29(7):2189–2198. doi:10.1002/ldr.2851.
  • Liu Y, Sohi SP, Liu S, Guan J, Zhou J, Chen J. 2019. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J Environ Manage. 235:276–281. doi:10.1016/j.jenvman.2019.01.045.
  • Liu N, Zhang Y, Xu C, Liu P, Lv J, Liu YY, Wang Q. 2020. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study. J Hazard Mater. 384:121371. doi:10.1016/j.jhazmat.2019.121371.
  • Lomaglio T, Hattab-Hambli N, Bret A, Miard F, Trupiano D, Scippa GS, Motelica-Heino M, Bourgerie S, Morabito D. 2017. Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. J Geochemical Explor. 182:138–148. doi:10.1016/j.gexplo.2016.08.007.
  • Luo J, Cai L, Qi S, Wu J, Gu XWS. 2018. The interactive effects between chelator and electric fields on the leaching risk of metals and the phytoremediation efficiency of Eucalyptus globulus. J Clean Prod. 202:830–837. doi:10.1016/j.jclepro.2018.08.130.
  • Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X, et al. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage. 186:285–292. doi:10.1016/j.jenvman.2016.05.068.
  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R. 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 46(3):854–862. doi:10.1016/j.watres.2011.11.058.
  • Maiti SK. 2013. Ecorestoration of coal mine degraded lands. New Delhi: Springer.
  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere. 127:58–63. doi:10.1016/j.chemosphere.2014.12.073.
  • Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena. 111:64–71. doi:10.1016/j.catena.2013.06.025.
  • Meier S, Curaqueo G, Khan N, Bolan N, Rilling J, Vidal C, Fernández N, Acuña J, González ME, Cornejo P, et al. 2017. Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. J Soils Sediments. 17(5):1237–1250. doi:10.1007/s11368-015-1224-1.
  • Meng J, Tao M, Wang L, Liu X, Xu J. 2018. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ. 633:300–307. doi:10.1016/j.scitotenv.2018.03.199.
  • Moreno-Barriga F, Díaz V, Acosta JA, Muñoz MÁ, Faz Á, Zornoza R. 2017. Organic matter dynamics, soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste. Geoderma. 301:19–29. doi:10.1016/j.geoderma.2017.04.017.
  • Mukhopadhyay S, Maiti SK. 2011. Trace metal accumulation and natural mycorrhizal colonisation in an afforested coalmine overburden dump: a case study from India. Int J Mining Reclam Environ. 25(2):187–207. doi:10.1080/17480930.2010.548663.
  • Munir MAM, Liu G, Yousaf B, Mian MM, Ali MU, Ahmed R, Cheema AI, Naushad M. 2020. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotoxicol Environ Saf. 191:110244. doi:10.1016/j.ecoenv.2020.110244.
  • Nandillon R, Lebrun M, Miard F, Gaillard M, Sabatier S, Villar M, Bourgerie S, Morabito D. 2019. Capability of amendments (biochar, compost and garden soil) added to a mining technosol  contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ Monit Assess. 191(7):465. doi:10.1007/s10661-019-7561-6.
  • Nandillon R, Miard F, Lebrun M, Gaillard M, Sabatier S, Bourgerie S, Battaglia-Brunet F, Morabito D. 2019. Effect of biochar and amendments on Pb and As phytotoxicity and phytoavailability in a technosol. CLEAN–Soil Air Water. 47(3):1800220. doi:10.1002/clen.201800220.
  • National Research Council (NRC) 2007. Coal: research and development to support national energy policy. Washington (DC): National Academies Press.
  • Norini MP, Thouin H, Miard F, Battaglia-Brunet F, Gautret P, Guégan R, Le Forestier L, Morabito D, Bourgerie S, Motelica-Heino M. 2019. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J Environ Manage. 232:117–130. doi:10.1016/j.jenvman.2018.11.021.
  • Novak JM, Ippolito JA, Ducey TF, Watts DW, Spokas KA, Trippe KM, Sigua GC, Johnson MG. 2018. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere. 205:709–718. doi:10.1016/j.chemosphere.2018.04.107.
  • Novak JM, Ippolito JA, Watts DW, Sigua GC, Ducey TF, Johnson MG. 2019. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar. 1(1):97–114. doi:10.1007/s42773-019-00004-7.
  • Núñez-López RA, Meas Y, Gama SC, Borges RO, Olguín EJ. 2008. Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation. J Hazard Mater. 154(1–3):623–632. doi:10.1016/j.jhazmat.2007.10.101.
  • O’Connor D, Peng T, Li G, Wang S, Duan L, Mulder J, Cornelissen G, Cheng Z, Yang S, Hou D. 2018. Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Sci Total Environ. 621:819–826. doi:10.1016/j.scitotenv.2017.11.213.
  • Ogundiran MB, Mekwunyei NS, Adejumo SA. 2018. Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. J. Environ Chem Eng. 6(2):2206–2213. doi:10.1016/j.jece.2018.03.025.
  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth. 5(1):65–75. doi:10.5194/se-5-65-2014.
  • Paz-Ferreiro J, Plasencia P, Gascó G, Méndez A. 2017. Biochar from pyrolysis of deinking paper sludge and its use in the remediation of Zn-polluted Soils. Land Degrad. Develop. 28(1):355–360. doi:10.1002/ldr.2597.
  • Penido ES, Martins GC, Mendes TBM, Melo LCA, do Rosário Guimarães I, Guilherme LRG. 2019. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol Environ Saf. 172:326–333. doi:10.1016/j.ecoenv.2019.01.110.
  • Puga AP, Melo LCA, de Abreu CA, Coscione AR, Paz-Ferreiro J. 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 164:25–33. doi:10.1016/j.still.2016.01.008.
  • Raj D, Kumar A, Maiti SK. 2020. Mercury remediation potential of Brassica juncea (L.) Czern. for clean-up of flyash contaminated sites. Chemosphere. 248:125857. doi:10.1016/j.chemosphere.2020.125857.
  • Raj D, Maiti SK. 2019. Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess. 191:566. doi:10.1007/s10661-019-7743-2.
  • Robb S, Joseph S, Abdul Aziz A, Dargusch P, Tisdell C. 2020. Biochar’s cost constraints are overcome in small‐scale farming on tropical soils in lower‐income countries. L Degrad Dev. 31(13):1713–1726. doi:10.1002/ldr.3541.
  • Roberts DA, Cole AJ, Paul NA, De Nys R. 2015. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J Environ Manage. 161:173–180. doi:10.1016/j.jenvman.2015.07.002.
  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH. 1997. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochemical Explor. 60(2):115–126. doi:10.1016/S0375-6742(97)00036-8.
  • Rodríguez-Vila A, Asensio V, Forján R, Covelo EF. 2016. Assessing the influence of technosol and biochar amendments combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted mine soil. J Soils Sediments. 16(2):339–348. doi:10.1007/s11368-015-1222-3.
  • Rodríguez-Vila A, Covelo EF, Forján R, Asensio V. 2014. Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar. Environ Sci Pollut Res Int. 21(19):11293–11304. doi:10.1007/s11356-014-2993-6.
  • Rodríguez-Vila A, Covelo EF, Forján R, Asensio V. 2015. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. J Environ Manage. 147:73–80. doi:10.1016/j.jenvman.2014.09.011.
  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K. 2004. Phytoextraction crop disposal-an unsolved problem. Environ Pollut. 128(3):373–379. doi:10.1016/j.envpol.2003.09.012.
  • Šebelíková L, Csicsek G, Kirmer A, Vítovcová K, Ortmann-Ajkai A, Prach K, Řehounková K. 2019. Spontaneous revegetation versus forestry reclamation—vegetation development in coal mining spoil heaps across Central Europe. L Degrad Dev. 30:348–356. doi:10.1002/ldr.3233.
  • Sharma A, Nagpal AK. 2018. Soil amendments: a tool to reduce heavy metal uptake in crops for production of safe food. Rev Environ Sci Biotechnol. 17(1):187–203. doi:10.1007/s11157-017-9451-0.
  • Shukla MK, Lal R. 2005. Soil organic carbon stock for reclaimed minesoils in northeastern Ohio. Land Degrad Dev. 16(4):377–386. doi:10.1002/ldr.669.
  • Simiele M, Lebrun M, Miard F, Trupiano D, Poupart P, Forestier O, Scippa GS, Bourgerie S, Morabito D. 2020. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: effects on as soil immobilization and accumulation in three Salicaceae species. Sci Total Environ. 710:136203. doi:10.1016/j.scitotenv.2019.136203.
  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J. 2010. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J Anal Appl Pyrolysis. 87(1):1–7. doi:10.1016/j.jaap.2009.09.003.
  • Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J. 240:574–578. doi:10.1016/j.cej.2013.10.081.
  • Timmons D, Lema-Driscoll A, Uddin G. 2017. The economics of iochar carbon sequestration in Massachusetts. Boston (MA): University of Massachusetts.
  • Tordoff GM, Baker AJM, Willis AJ. 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere. 41(1–2):219–228. doi:10.1016/S0045-6535(99)00414-2.
  • Venkateswarlu K, Nirola R, Kuppusamy S, Thavamani P, Naidu R, Megharaj M. 2016. Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev Environ Sci Biotechnol. 15(2):327–354. doi:10.1007/s11157-016-9398-6.
  • Vocciante M, Caretta A, Bua L, Bagatin R, Franchi E, Petruzzelli G, Ferro S. 2019. Enhancements in phytoremediation technology: environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J Environ Manage. 237:560–568. doi:10.1016/j.jenvman.2019.02.104.
  • Wang L, Ji B, Hu Y, Liu R, Sun W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594–600. doi:10.1016/j.chemosphere.2017.06.025.
  • Wu P, Ata-Ul-Karim ST, Singh BP, Wang H, Wu T, Liu C, Fang G, Zhou D, Wang Y, Chen W. 2019. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar. 1(1):23–43. doi:10.1007/s42773-019-00002-9.
  • Xiao Y, Li Y, Che Y, Deng S, Liu M. 2018. Effects of biochar and nitrogen addition on nutrient and Cd uptake of Cichorium intybus grown in acidic soil. Int J Phytoremediation. 20(4):398–404. doi:10.1080/15226514.2017.1365342.
  • Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A. 2019. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol. 292:122030. doi:10.1016/j.biortech.2019.122030.
  • Zhan F, Zeng W, Yuan X, Li B, Li T, Zu Y, Jiang M, Li Y. 2019. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China. Environ Sci Pollut Res Int. 26(8):7743–7751. doi:10.1007/s11356-018-04079-w.
  • Zhang P, Zhang X, Li Y, Han L. 2020. Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresour Technol. 302:122850. doi:10.1016/j.biortech.2020.122850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.