513
Views
2
CrossRef citations to date
0
Altmetric
Articles

Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (Zea mays L.) plants

, , ORCID Icon, , , , , , & show all

References

  • Abbas MH, Abdelhafez AA. 2013. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere. 90(2):588–594. doi:10.1016/j.chemosphere.2012.08.042.
  • Abe JI, Bergmann FW, Obata K, Hizukuri S. 1988. Production of the raw-starch digesting amylase of Aspergillus sp. K-27. Appl Microbiol Biotechnol. 27(5–6):447–450.
  • Adesemoye A, Obini M, Ugoji E. 2008. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol. 39(3):423–426. doi:10.1590/S1517-83822008000300003.
  • Ae N, Shen R. 2002. Root cell-wall properties are proposed to contribute to phosphorus (P) mobilization by groundnut and pigeonpea. In: Food security in nutrient-stressed environments: exploiting plant's genetic capabilities. Dordrecht: Springer Netherlands. p. 123–131.
  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, et al. 2019. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem. 139:569–577. doi:10.1016/j.plaphy.2019.03.041.
  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M. 2016. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul. 35(2):303–315. doi:10.1007/s00344-015-9534-5.
  • Ahmad P, Prasad MNV. 2011. Abiotic stress responses in plants: metabolism, productivity and sustainability. New York: Springer-Verlag. p. XV–473.
  • Ali B, Amna Javed MT, Ali H, Munis MFH, Chaudhary HJ. 2017. Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum. Int J Phytoremediat. 19(1):14–22. doi:10.1080/15226514.2016.1216075.
  • Ali J, Mahmood T, Hayat K, Afridi MS, Ali F, Chaudhary HJ. 2018. Phytoextraction of Cr by maize (Zea mays L.): the role of plant growth promoting endophyte and citric acid under polluted soil. Arch Environ Prot. 44(2):73–82.
  • Al Mahmud J, Hasanuzzaman M, Nahar K, Bhuyan MB, Fujita M. 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf. 147:990–1001. doi:10.1016/j.ecoenv.2017.09.045.
  • Amna Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ. 2015. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess. 187(6):311. doi:10.1007/s10661-015-4557-8.
  • Amna Din BU, Sarfraz S, Xia Y, Kamran MA, Javed MT, Sultan T, Munis MFH, Chaudhary HJ. 2019. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Saf. 183:109466. doi:10.1016/j.ecoenv.2019.109466.
  • Anwer S, Ashraf MY, Hussain M, Ashraf M, Jamil A. 2012. Citric acid mediated phytoextraction of cadmium by maize (Zea mays L.). Pak J Bot. 44(6):1831–1836.
  • Arias JA, Peralta VJR, Ellzey JT, Ren M, Viveros MN, Gardea TJL. 2010. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot. 68(2):139–148. doi:10.1016/j.envexpbot.2009.08.009.
  • Bai X, Dong Y, Wang Q, Xu L, Kong J, Liu S. 2015. Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biologia Plant. 59(1):163–170. doi:10.1007/s10535-014-0476-8.
  • Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem. 19(4):451–457. doi:10.1016/0038-717(87)90037-X.
  • Bates LS, Waldren RP, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207.
  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181(2):413–423. doi:10.1111/j.1469-8137.2008.02657.x.
  • Bi X, Feng X, Yang Y, Li X, Shin GP, Li F, Qiu G, Li G, Liu T, Fu Z. 2009. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ Pollut. 157(3):834–839. doi:10.1016/j.envpol.2008.11.013.
  • Blaylock MJ. 2000. Field demonstrations of phytoremediation of lead-contaminated soils. Boca Raton (FL): Lewis Publishers.
  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol. 31(3):860–865.
  • Bucker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genet Mol Biol. 40(1 suppl 1):373–386. doi:10.1590/1678-4685-GMB-2016-0087.
  • Cappuccino JG, Sherman N. 1992. Microbiology: a laboratory manual. New York (NY): Pearson/Benjamin Cummings.
  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J. 2017. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 81(2):253–264. doi:10.1007/s10725-016-0202-y.
  • Chiu K, Ye Z, Wong MH. 2005. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere. 60(10):1365–1375. doi:10.1016/j.chemosphere.2005.02.035.
  • Cullen JT, McAlister J. 2017. Biogeochemistry of lead. Its release to the environment and chemical speciation. Met Ions Life Sci. 17:21.
  • Danh LT, Truong P, Mammucari R, Tran T, Foster N. 2009. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation. 11(8):664–691. doi:10.1080/15226510902787302.
  • Das P, Datta R, Makris KC, Sarkar D. 2010. Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut. 158(5):1980–1983. doi:10.1016/j.envpol.2009.12.011.
  • Datta R, Quispe MA, Sarkar D. 2011. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Bull Environ Contam Toxicol. 86(1):124–128. doi:10.1007/s00128-010-0185-8.
  • Denton B. 2007. Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Basic Biotechnol J. 3:1–5.
  • Din BU, Rafique M, Javed MT, Kamran MA, Mehmood S, Khan M, Sultan T, Munis MFH, Chaudhary HJ. 2020. Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: a biochemical analysis. Plant Physiol Biochem. 146:249–258. doi:10.1016/j.plaphy.2019.11.010.
  • Dogan M, Karatas M, Aasim M. 2018. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotoxicol Environ Saf. 148:431–440. doi:10.1016/j.ecoenv.2017.10.058.
  • Dworkin M, Foster J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 75(5):592–603. doi:10.1128/JB.75.5.592-603.1958.
  • Estefan G, Sommer R, Ryan J. 2013. Methods of soil, plant, and water analysis: a manual for the West, Asia and North Africa region. Beirut (Lebanon): International Center for Agricultural Research in the Dry Areas (ICARDA).
  • Farmer IJ, Asbury M, Hickman F, Brenner DJ, Group ES. 1980. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Evol Microbiol. 30(3):569–584.
  • Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun. 303(2):440–445. doi:10.1016/s0006-291x(03)00349-8.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 28(3):367–374. doi:10.1016/j.biotechadv.2010.02.001.
  • Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169(1):30–39. doi:10.1016/j.micres.2013.09.009.
  • Glick BR. 2018. Soil microbes and sustainable agriculture. Pedosphere. 28(2):167–169. doi:10.1016/S1002-0160(18)60020-7.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1):192–195. doi:10.1104/pp.26.1.192.
  • Guerrieri MC, Fanfoni E, Fiorini A, Trevisan M, Puglisi E. 2020. Isolation and Screening of Extracellular PGPR from the Rhizosphere of Tomato Plants after Long-Term Reduced Tillage and Cover Crops. Plants. 9(5):668.
  • Gupta D, Huang H, Corpas F. 2013. Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int. 20(4):2150–2161. doi:10.1007/s11356-013-1485-4.
  • Gupta DK, Srivastava A, Singh V. 2008. EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. J Environ Biol. 29(6):903–906.
  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK. 1994. A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol. 40(3):255–260. doi:10.2323/jgam.40.255.
  • Hassan W, Bano R, Khatak BU, Hussain I, Yousaf M, David J. 2015. Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes: effect on total microbial and enzymatic activity. Clean Soil Air Water. 43(3):391–398. doi:10.1080/00380768.2013.845735.
  • Hassan W, Chen W, Cai P, Huang Q. 2014. Estimation of enzymatic, microbial, and chemical properties in Brown soil by microcalorimetry. J Therm Anal Calorim. 116(2):969–988. doi:10.1007/s10973-013-3588-z.
  • Hassan W, Chen W, Huang Q, Mohamed I. 2013. Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. Soil Sci Plant Nutr. 59(6):858–870.
  • Hayat K, Menhas S, Bundschuh J, Zhou P, Niazi NK, Amna Hussain A, Hayat S, Ali H, Wang J, Khan AA. 2020. Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Int J Phytoremediat. 23:1–3.
  • Hussain A, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, Ali M, Manghwar H, Jan F, Chaudhary HJ. 2019. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ Exp Bot. 159:23–33. doi:10.1016/j.envexpbot.2018.12.006.
  • Hussain J, Saeed W, Naqvi TA, Shah MM, Ahmad R, Hassan A, Mahmood Q. 2015. Dietary Toxicity of Lead and Hyper-Accumulation in Petroselinum crispum. Arab J Sci Eng. 40(7):1819–1824. doi:10.1007/s13369-014-1526-4.
  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F. 2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater. 147(3):806–816. doi:10.1016/j.jhazmat.2007.01.117.
  • Jayasri M, Suthindhiran K. 2017. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci. 7(3):1247–1253. doi:10.1007/s13201-015-0376-x.
  • Jean SL, Bordas F, Bollinger JC. 2012. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ Pollut. 164:175–181. doi:10.1016/j.envpol.2012.01.022.
  • Joseph B, Ranjan PR, Lawrence R. 2012. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod. 1(2):141–152.
  • Juwarkar AA, Nair A, Dubey KV, Singh S, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. 68(10):1996–2002. doi:10.1016/j.chemosphere.2007.02.027.
  • Kamran MA, Eqani S, Bibi S, Xu R-k, Monis MFH, Katsoyiannis A, Bokhari H, Chaudhary HJ. 2016. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicol Environ Saf. 126:256–263. doi:10.1016/j.ecoenv.2016.01.002.
  • Kazempour MN. 2004. Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathology J. 3(2):88–96. doi:10.3923/ppj.2004.88.96.
  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A. 2011. Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci. 12(10):6894–6918. doi:10.3390/ijms12106894.
  • Khan M, Daud M, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. 2016. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Environ Sci Pollut Res Int. 23(9):8431–8440. doi:10.1007/s11356-015-5959-4.
  • Khan N, Bano A. 2016. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation. 18(3):211–221. doi:10.1080/15226514.2015.1064352.
  • Kiran BR, Prasad M. 2017. Responses of Ricinus communis L.(Castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk J Agri Food Sci. 31(1):73–80.
  • Kumar A, Prasad M, Sytar O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. 89(9):1056–1065. doi:10.1016/j.chemosphere.2012.05.070.
  • Kumar A, Prasad MNV. 2018. Plant-lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf. 166:401–418. doi:10.1016/j.ecoenv.2018.09.113.
  • Kumar A, Schreiter I, Wefer RA, Tsechansky L, Schüth C, Graber E. 2016. Production and utilization of biochar from organic wastes for pollutant control on contaminated sites. In: Environmental materials and waste. London: Academic Press. p. 91–116.
  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. 2016. In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. In: Reviews of environmental contamination and toxicology. Vol. 236. Cham: Springer. p. 1–115.
  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estevez M, Aarab A, Lafont R. 2013. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci. 20(1):29–36. doi:10.1016/j.sjbs.2012.09.001.
  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J, Kennedy C. 2004. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol. 186(16):5384–5391. doi:10.1128/JB.186.16.5384-5391.2004.
  • Lee SC, Luan S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 35(1):53–60. doi:10.1111/j.1365-3040.2011.02426.x.
  • Li K, Ramakrishna W. 2011. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater. 189(1–2):531–539. doi:10.1016/j.jhazmat.2011.02.075.
  • Loper JE. 1986. Influence of Bacterial Sources of Indole-3-acetic Acid on Root Elongation of Sugar Beet. Phytopathology. 76(4):386.
  • López OA, Dias MC, Ferrer MÁ, Calderón A, Moutinho-Pereira J, Correia C, Santos C. 2018. Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environ Sci Pollut Res Int. 25(2):1319–1330. doi:10.1007/s11356-017-0505-1.
  • Luciano A, Viotti P, Torretta V, Mancini G. 2013. Numerical approach to modelling pulse-mode soil flushing on a Pb-contaminated soil. J Soils Sediments. 13(1):43–55.
  • Luo C, Shen Z, Li X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59(1):1–11. doi:10.1016/j.chemosphere.2004.09.100.
  • Luo C, Shen Z, Lou L, Li X. 2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut. 144(3):862–871. doi:10.1016/j.envpol.2006.02.012.
  • Luo S-l, Chen L, Chen J-l, Xiao X, Xu T-y, Wan Y, Rao C, Liu C-b, Liu Y-t, Lai C, et al. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 85(7):1130–1138. doi:10.1016/j.chemosphere.2011.07.053.
  • Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A. 2016. Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ. 557-558:764–772. doi:10.1016/j.scitotenv.2016.03.067.
  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage. 156:62–69. doi:10.1016/j.jenvman.2015.03.024.
  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M. 2017. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils Sediments. 17(5):1310–1320.
  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D. 2007. High uptake of 2,4,6-trinitrotoluene by Vetiver grass-potential for phytoremediation? Environ Pollut. 146(1):1–4. doi:10.1016/j.envpol.2006.06.020.
  • Malecka A, Piechalak A, Tomaszewska B. 2009. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant. 31(5):1053–1063. doi:10.1007/s11738-009-0326-z.
  • Malik RN, Husain SZ, Nazir I. 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot. 42(1):291–301.
  • Marulanda A, Barea J-M, Azcón R. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul. 28(2):115–124. doi:10.1007/s00344-009-9079-6.
  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat. 11(3):251–267.
  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F. 2009. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation. 11(6):558–574. doi:10.1080/15226510902717580.
  • Murakami M, Ae N. 2009. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J Hazard Mater. 162(2–3):1185–1192. doi:10.1016/j.jhazmat.2008.06.003.
  • Namasivayam E, Ravindar JD, Mariappan K, Akhil J, Mukesh K, Jayaraj R. 2011. Production of extracellular pectinase by Bacillus cereus isolated from market solid waste. J Bioanal Biomed. 3(3):70–75.
  • Nouet C, Motte P, Hanikenne M. 2011. Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci. 16(7):395–404. doi:10.1016/j.tplants.2011.03.005.
  • Obiora SC, Chukwu A, Toteu SF, Davies TC. 2016. Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, southeastern Nigeria. J Geol Soc India. 87(4):453–462. doi:10.1007/s12594-016-0413-x.
  • Parys E, Wasilewska W, Siedlecka M, Zienkiewicz M, Drożak A, Romanowska E. 2014. Metabolic responses to lead of metallicolous and nonmetallicolous populations of Armeria maritima. Arch Environ Contam Toxicol. 67(4):565–577. doi:10.1007/s00244-014-0057-z.
  • Peng W, Li X, Xiao S, Fan W. 2018. Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments. 18(4):1701–1719. doi:10.1007/s11368-018-1921-7.
  • Pourrut B, Jean S, Silvestre J, Pinelli E. 2011. Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res. 726(2):123–128. doi:10.1016/j.mrgentox.2011.09.001.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. In: Reviews of environmental contamination and toxicology. Vol. 213. New York (NY): Springer. p. 113–136.
  • Putwattana N, Kruatrachue M, Kumsopa A, Pokethitiyook P. 2015. Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int J Phytoremediation. 17(1–6):165–174. doi:10.1080/15226514.2013.876962.
  • Ripa FA, Cao WD, Tong S, Sun JG. 2019. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Biomed Res Int. 2019:6105865–6105812.
  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S. 2013. Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot. 87:100–109.
  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 278(1):1–9. doi:10.1111/j.1574-6968.2007.00918.x.
  • Saeedipour S. 2013. Relationship of grain yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. In:Proc Natl Acad Sci India, Sect B Biol Sci. 83(3):311–315. doi:10.1007/s40011-012-0147-5.
  • Schwyn B, Neilands J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160(1):47–56. doi:10.1016/0003-2697(87)90612-9.
  • Shahid M, Pinelli E, Dumat C. 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater. 219-220:1–12. doi:10.1016/j.jhazmat.2012.01.060.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut. 156(3):1164–1170. doi:10.1016/j.envpol.2008.04.007.
  • Shi Y, Huang Z, Liu X, Imran S, Peng L, Dai R, Deng Y. 2016. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. Environ Sci Pollut Res Int. 23(7):6168–6178. doi:10.1007/s11356-015-5778-7.
  • Silva S, Pinto G, Santos C. 2017. Low doses of Pb affected Lactuca sativa photosynthetic performance. Photosynt. 55(1):50–57. doi:10.1007/s11099-016-0220-z.
  • Singh RP, Shelke GM, Kumar A, Jh PN. 2015. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol. 6:937.
  • Taiwo A, Gbadebo A, Oyedepo J, Ojekunle Z, Alo O, Oyeniran A, Onalaja O, Ogunjimi D, Taiwo O. 2016. Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater. 304:166–172. doi:10.1016/j.jhazmat.2015.10.061.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 117:28–40.
  • Usman ARA, Mohamed HM. 2009. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere. 76(7):893–899. doi:10.1016/j.chemosphere.2009.05.025.
  • Vamerali T, Bandiera M, Mosca G. 2010. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett. 8(1):1–17.
  • Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255(2):571–586. doi:10.1023/A:1026037216893.
  • Wakelin SA, Warren RA, Harvey PR, Ryder MH. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils. 40(1):36–43. doi:10.1007/s00374-004-0750-6.
  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y. 2012. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere. 89(6):743–750.
  • Wang J, Wang X, Li G, Guo P, Luo Z. 2010. Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis. J Hazard Mater. 176(1–3):333–338. doi:10.1016/j.jhazmat.2009.11.032.
  • WHO. 2017. Recycling used lead-acid batteries: health considerations. Geneva: World Health Organization.https://apps.who.int/iris/handle/10665/259447.
  • Xie Z, Wu L, Chen N, Liu C, Zheng Y, Xu S, Li F, Xu Y. 2012. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA. Int J Phytoremediation. 14(8):727–740. doi:10.1080/15226510903390452.
  • Xu FY, Wang XL, Wu QX, Zhang XR, Wang LH. 2012. Physiological responses differences of different genotype sesames to flooding stress. Adv J Food Sci Technol. 4(6):352–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.