332
Views
0
CrossRef citations to date
0
Altmetric
Articles

Co-planting of Salix interior and Trifolium pratense for phytoremediation of trace elements from wood preservative contaminated soil

, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • An L, Pan Y, Wang Z, Zhu C. 2011. Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil. 345(1–2):237–245.
  • Balabanova B, Stafilov T, Bačeva K. 2015. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas. J Environ Health Sci. 13:2–17.
  • Beaulieu M. 2019. Guide d’intervention – Protection des sols et réhabilitation des terrains contaminés. Québec: ministère de l’Environnement et de la Lutte contre les changements climatiques. Ann. 219.
  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P. 2007. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut. 147(3):546–553. doi:10.1016/j.envpol.2006.10.013.
  • Blanco-Canqui H. 2010. Energy crops and their implications on soil and environment. Agron J. 102(2):403–419.
  • Brereton NJB, Gonzalez E, Desjardins D, Labrecque M, Pitre FE. 2020. Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil. Sci Total Environ. 711:135067 doi:10.1016/j.scitotenv.2019.135067.
  • Bruno JF, Stachowicz JJ, Bertness MD. 2003. Inclusion of facilitation into ecological theory. Trends Ecol Evol. 18(3):119–125.
  • Courchesne F, Turmel MC, Cloutier-Hurteau B, Constantineau S, Munro L, Labrecque M. 2017. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. Int J Phytoremediation. 19(6):545–554. doi:10.1080/15226514.2016.1267700.
  • Cameselle C, Gouveia S. 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater. 361:95–102. doi:10.1016/j.jhazmat.2018.08.062.
  • Carlsson G, Huss-Danell K. 2003. Nitrogen fixation in perennial forage legumes in the field. Plant Soil. 253(2):353–372. doi:10.1023/A:1024847017371.
  • Centre d’Expertise en Analyse Environnementale du Québec [CEAEQ]. 2020. www.ceaeq.gouv.qc.ca.
  • Chirakkara RA, Reddy KR. 2015. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol Eng. 85:265–274.
  • Cid CV, Rodriguez JH, Salazar MJ, Blanco A, Pignata ML. 2016. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils. Int J Phytoremediation. 18(9):908–917. doi:10.1080/15226514.2016.1156636.
  • Coles CA, Arisi JA, Organ M, Veinott GI. 2014. Leaching of chromium, copper, and arsenic from CCA-treated utility poles. Appl Environ Soil Sci. 2014:1–167982. doi:10.1155/2014/167971.
  • Coudert L, Blais JF, Mercier G, Cooper P, Janin A. 2013. Remediation processes for wood treated with organic and/or inorganic preservatives. In: Torgal FP, Tam VM, Labrincha JA, et al., editors Handbook of recycled concrete and demolition waste. Cambridge: Woodhead Publishing. p. 526–554.
  • Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, et al. 2016. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Phil Trans R Soc B. 371(1694):20150277.,
  • Delorme TA, Gagliardi JV, Angle JS, Chaney RL. 2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol. 47(8):773–776.
  • Desjardins D, Brereton NJ, Marchand L, Brisson J, Pitre FE, Labrecque M. 2018. Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil. Sci Total Environ. 610-611:1428–1438.
  • Desjardins D, Pitre FE, Nissim WG, Labrecque M. 2016. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int J Phytoremediat. 18(6):598–604. doi:10.1080/15226514.2015.1086296.
  • El-Mahrouk ESM, Eisa EAH, Hegazi MA, Abdel-Gayed MES, Dewir YH, El-Mahrouk ME, Naidoo Y. 2019. Phytoremediation of cadmium-, copper and lead-contaminated soil by Salix mucronate. Horts. 54(7):1249–1257. doi:10.21273/HORTSCI14018-19.
  • Federal Contaminated Sites Inventory [FCSI]. 2016. https://www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-eng.aspx.
  • Gove B, Hutchinson JJ, Young SD, Craigon J, McGrath SP. 2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. Int J Phytoremediat. 4(4):267–281.
  • Guemiza K, Coudert L, Metahni S, Mercier G, Besner S, Blais JF. 2017. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: a review. J Hazard Mater. 333:194–214. doi:10.1016/j.jhazmat.2017.03.021.
  • Hasan AR, Hu L, Solo-Gabriele HM, Fieber L, Cai Y, Townsend TG. 2010. Field-scale leaching of arsenic, chromium and copper from weathered treated wood. Environ Pollut. 158(5):1479–1486. doi:10.1016/j.envpol.2009.12.027.
  • Hayat T, Ding N, Ma B, He Y, Shi J, Xu J. 2011. Dissipation of pentachlorophenol in the aerobic-anaerobic interfaces established by the rhizosphere of rice (Oryza sativa L.) root. J Environ Qual. 40(6):1722–1729. doi:10.2134/jeq2010.0347.
  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid SB, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 75(1):3–35.
  • Johnson GA, Wyse DL, Sheaffer CC. 2013. Yield of perennial herbaceous and woody biomass crops over time across three locations. Biomass Bioenerg. 58:267–274.
  • Labrecque M, Teodorescu TI, Daigle S. 1995. Effect of wastewater sludge on growth and heavy metal bioaccumulation of two Salix species. Plant Soil. 171(2):303–316. doi:10.1007/BF00010286.
  • Li L, Tilman D, Lambers H, Zhang FS. 2014. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203(1):63–69. doi:10.1111/nph.12778.
  • Liu L, Li Y, Tang J, Hu L, Chen X. 2011. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil. J Environ Sci. 23(3):453–460.
  • Meagher RB. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol. 3(2):153–162. doi:10.1016/s1369-5266(99)00054-0.
  • Megharaj M, Naidu R. 2017. Soil and brownfield bioremediation. Microb Biotechnol. 10(5):1244–1249. doi:10.1111/1751-7915.12840.
  • Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, Valiente-Banuet A, Callaway RM. 2006. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett. 9(7):767–773. doi:10.1111/j.1461-0248.2006.00935.x.
  • Mills T, Arnold B, Sivakumaran S, Northcott G, Vogeler I, Robinson B, Norling C, Leonil D. 2006. Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals. J Environ Manage. 79(3):232–241. doi:10.1016/j.jenvman.2005.07.005.
  • Mleczek M, Gąsecka M, Drzewiecka K, Goliński P, Magdziak Z, Chadzinikolau T. 2013. Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes. Acta Physiol Plant. 35(11):3251–3259. doi:10.1007/s11738-013-1360-4.
  • Mulder C, Jumpponen A, Högberg P, Huss-Danell K. 2002. How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia. 133(3):412–421. doi:10.1007/s00442-002-1043-0.
  • Ni JJ, Leung AK, Ng CWW. 2018. Modelling soil suction changes due to mixed species planting. Ecol Eng. 117:1–17.
  • Pitre FE, Teodorescu TI, Labrecque M. 2010. Brownfield phytoremediation of heavy metals using Brassica and Salix supplemented with EDTA: results of the first growing season. J Environ Sci Eng. 4:51–59.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int. 29(4):529–540. doi:10.1016/S0160-4120(02)00152-6.
  • Purdy JJ, Smart LB. 2008. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int J Phytoremediation. 10(6):515–528. doi:10.1080/15226510802115000.
  • Quartacci MF, Micaelli F, Sgherri C. 2014. Brassica carinata planting pattern influences phytoextraction of metals from a multiple contaminated soil. Agrochimica. 58:77–89.
  • Rehman M, Liu L, Wang Q, Saleem MH, Bashir S, Ullah S, Peng D. 2019. Copper environmental toxicology, recent advances, and future outlook: a review. Environ Sci Pollut Res. 26:18003–18016.
  • Ranieri E, Gikas P. 2014. Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollut. 225(6):1981.
  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE. 2000. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil. 227(1/2):301–306. doi:10.1023/A:1026515007319.
  • Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Mehtatalo L, Pappinen A. 2016. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. J Environ Manage. 183(Pt 3):467–477. doi:10.1016/j.jenvman.2016.08.082.
  • Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP. 2007. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut. 147(1):74–82. doi:10.1016/j.envpol.2006.08.029.
  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, et al. 2005. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr. 75(1):37–63.
  • Smith RG, Gross KL, Robertson GP. 2008. Effects of crop diversity on agroecosystem function: crop yield response. Ecosyst. 11(3):355–366.
  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. 2001. Diversity and productivity in a long-term grassland experiment. Science. 294(5543):843–845. doi:10.1126/science.1060391.
  • Tlustoš P, Pavlíková D, Száková J, Fischeroá Z, Balík J. 2006. Exploitation of fast growing trees in metal remediation. In: Mackova M, Dowling D, Macek T, editors. Phytoremediation rhizoremediation. Dordrecht: Springer. p. 83–102.
  • Tlustoš P, Száková J, Vysloužilová M, Pavlíková D, Weger J, Javorská H. 2007. Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol. 2:254–275.
  • United States Environmental Protection Agency [USEPA]. 2004. Semi volatile target compound list and corresponding CRQLs (Contract Required Quantitation Limits).
  • United States Environmental Protection Agency [USEPA]. 2019. Overview of the brownfields program. https://www.epa.gov/brownfields/overview-epas-brownfields-program.
  • United States Government Accountability Office [USGAO]. 2010. EPA’s estimated costs to remediate existing sites exceed current funding levels, and more sites are expected to be added to the national priorities list. GAO-10-380.
  • Van der Perk M. 2013. Soil and water contamination. 2nd ed. Boca Raton. Finland (FI): CRC Press.
  • Vyslouzilova M, Tlustos P, Száková J. 2011. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ. 49(12):542–547.
  • Wang J, Ge Y, Chen T, Bai Y, Qian BY, Zhang CB. 2014. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment. PLoS One. 9(4):e93733.
  • Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A. 2013. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int J Phytoremediation. 15(3):283–298. doi:10.1080/15226514.2012.694501.
  • Wieshammer G, Unterbrunner R, García TB, Zivkovic MF, Puschenreiter M, Wenzel WW. 2007. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil. 298(1–2):255–264.
  • Xiong P-p, He C-q, Oh K, Chen X, Liang X, Liu X, Cheng X, Wu C-l, Shi Z-c. 2018. Medicago sativa L. enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in situ. Ecol Eng. 116:61–66.
  • Yang J, Yang J, Huang J. 2017. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–A field case. Ecol Eng. 109:35–40.
  • Yang W, Zhao F, Wang Y, Ding Z, Yang X, Zhu Z. 2020. Differences in uptake and accumulation of copper and zinc by Salix clones under flooded versus non-flooded conditions. Chemosphere. 241:125059. doi:10.1016/j.chemosphere.2019.125059.
  • Yanitch A, Brereton NJ, Gonzalez E, Labrecque M, Joly S, Pitre FE. 2017. Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci. 8:1115. doi:10.3389/fpls.2017.01115.
  • Zamora DS, Apostol KG, Wyatt GJ. 2014. Biomass production and potential ethanol yields of shrub willow hybrids and native willow accessions after a single 3-year harvest cycle on marginal lands in central Minnesota. Agroforest Syst. 88(4):593–606. doi:10.1007/s10457-014-9693-6.
  • Zeng P, Guo Z, Xiao X, Peng C, Huang B, Feng W. 2019. Complementarity of co-planting a hyperaccumulator with three metal (loid)-tolerant species for metal (loid)-contaminated soil remediation. Ecotox Environ Safe. 169:306–315.
  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP. 2015. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol. 49(2):750–759. doi:10.1021/es5047099.
  • Zheng W, Wang X, Yu H, Tao X, Zhou Y, Qu W. 2011. Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ Sci Technol. 45(11):4668–4675. doi:10.1021/es1043563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.