356
Views
4
CrossRef citations to date
0
Altmetric
Articles

The effect of particle size of bamboo biochar on the phytoremediation of Salix psammophila C. to multi-metal polluted soil

, , , , &

References

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-Ur-Rehman M, Ibrahim M, Arshad M, Qayyum MF. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf. 148:825–833. doi:10.1016/j.ecoenv.2017.11.063.
  • Ahmad M, Sang SL, Lim JE, Lee S, Cho JS, Moon DH, Hashimoto Y, Ok YS. 2014. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere. 95:433–441. doi:10.1016/j.chemosphere.2013.09.077.
  • Ameloot N, Neve SD, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem. 57:401–410.
  • Baldock JA, Smernik RJ. 2002. Chemical composition and bioavailability of thermally altered Pinus Resinosa (Red pine) wood. Org Geochem. 33(9):1093–1109.
  • Bashir S, Shaaban M, Mehmood S, Zhu J, Fu QL, Hu HQ. 2018. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bull Environ Contam Toxicol. 100(6):834–838. doi:10.1007/s00128-018-2332-6.
  • Bhattacharyya P, Chakrabarti K, Chakraborty A. 2005. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere. 60(3):310–318. doi:10.1016/j.chemosphere.2004.11.097.
  • Cao Y, Ma C, Chen H, Zhang J, White JC, Chen G, Xing B. 2020. Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb. J Hazard Mater. 392:122428. doi:10.1016/j.jhazmat.2020.122428.
  • Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann JJ. 2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ. 574:24–33.
  • Chen J, LiuX, ZhengJ, ZhangB, LuH, ChiZ, PanG, LiL, ZhengJ, ZhangX, et al. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol. 71:33–44.
  • Chen J, Shafi M, Wang Y, Wu J, Ye Z, Liu C, Zhong B, Guo H, He L, Liu D. 2016. Organic acid compounds in root exudation of MosoBamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res Int. 23(20):20977–20984. doi:10.1007/s11356-016-7323-8.
  • Chen M, Wang D, Yang F, Xu X, Xu N, Cao X. 2017. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environ Pollut. 230:540–549.
  • Chintala R, Schumacher TE, McDonald LM, Clay DE, Malo DD, Papiernik SK, Clay SA, Julson JL. 2013. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean soil Air Water. 41(9999):1–9.
  • Clemens S, Palmgren MG, Krämer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7(7):309–315.
  • Deng Y, Huang S, Dong C, Zhuo M, Wang X. 2020. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technol. 303:122853. doi:10.1016/j.biortech.2020.122853.
  • Edenborn SL, Edenborn HM, Krynock RM, Zickefoose Haug KL. 2015. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar. J Environ Manage. 150:226–234. doi:10.1016/j.jenvman.2014.11.023.
  • Forján R, Rodríguez-Vila A, Cerqueira B, Covelo EF. 2017. Comparison of the effects of compost versus compost and biochar on the recovery of a mine soil by improving the nutrient content. J. Geochem. Explor. 183:46–57.
  • Garau G, Porceddu A, Sanna M, Silvetti M, Castaldi P. 2019. Municipal solid wastes as a resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotoxicol Environ Saf. 174:445–454. doi:10.1016/j.ecoenv.2019.03.007.
  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. T Asabe. 51(6):2061–2069.
  • Guan SY. 1986. Soil enzyme and its study method. Beijing: China Agriculture Press (in Chinese)
  • He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ Pollut. 252(Pt A):846–855. doi:10.1016/j.envpol.2019.05.151.
  • He PJ, Liu YH, Shao H, Zhang H, Lü F. 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere. 212:385–392. doi:10.1016/j.chemosphere.2018.08.106.
  • Hooda P. 2010. Trace elements in soils. Chichester, UK: Wiley-Blackwell.
  • Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J. 2017. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere. 174:545–553. doi:10.1016/j.chemosphere.2017.01.130.
  • Jiang J, Xu RK, Jiang TY, Li Z. 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater. 229 − 230:145–150.
  • Kavitha B, Reddy PVL, Kim B, Lee SS, Pandey SK, Kim K-H. 2018. Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manage. 227:146–154. doi:10.1016/j.jenvman.2018.08.082.
  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C. 2009. Trace element behavior at the root-soil interface: implications in phytoremediation. Environ Exp Bot. 67(1):243–259.
  • Kunhikrishnan A, Bolan NS, Naidu R, Kim W. 2013. Recycled water sources influence the bioavailability of copper to earthworms. J Hazard Mater. 261:784–792.
  • Laird D, Fleming P, Wang BQ, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 158(3–4):436–442.
  • Lebrun M, Macri C, Miard F, Hattab-Hambli N, Motelica-Heino M, Morabito D, Bourgerie S. 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochem Explor. 182:149–‒156.
  • Lebrun M, Miard F, Nandillon R, Léger J-C, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D. 2018. Assisted phytostabilization of amulticontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana)). Chemosphere. 194:316–326. doi:10.1016/j.chemosphere.2017.11.113.
  • Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change. 11(2):403–427.
  • Lehmann J, Joseph S. 2015. Biochar for environmental management: science, technology and implementation. London, UK: Routledge.
  • Lehmann J, Silva JPD, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249(2):343–357. doi:10.1023/A:1022833116184.
  • Li G, Khan S, Ibrahim M, Sun TR, Tang JF, Cotner J, Xu YY. 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazrd Mater. 348:100–108.
  • Li H, Li Z, Khaliq MA, Xie TH, Chen YH, Wang G. 2019. Chlorine weaken the immobilization of Cd in soil-rice systems by biochar. Chemosphere. 235:1172–1179. doi:10.11016/j.chemosphere.2019.06.203.
  • Li X, Xiao J, Salam M, Ma C, Chen G. 2020. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi–metals contaminated soil. Int J Phytoremediat. doi:10.1080/15226514.2020.1816893.
  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agr Ecosyst Environ. 191:124–132. doi:10.1016/j.agee.2014.04.010.
  • Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut. 132(1):21–27. doi:10.1016/j.envpol.2004.04.001.
  • Matijevic L, Romic D, Romic M. 2014. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants. Environ Geochem Health. 36(5):883–896. doi:10.1007/s10653-014-9606-7.
  • Mitton FM, Gonzalez M, Peña A, Miglioranza KSB. 2012. Effects of amendments on soil availability and phytoremediation potential of aged p, p′-DDT, p, p′-DDE and p, p′-DDD residues by willow plants (Salix sp.). J Hazard Mater. 203−204:62–68.
  • Noguera D, Rondón M, Laossi KR, Hoyos V, Lavelle P, Cruz de Carvalh MH, Barot S. 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem. 42(7):1017–1027.
  • Oleszczuk P, Zielińska A, Cornelissen G. 2014. Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content. Bioresour Technol. 156:139–145. doi:10.1016/j.biortech.2014.01.003.
  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348(1–2):439–451.
  • Prodana M, Silva C, Gravato G, Verheijen FGA, Keizer JJ, Soares AMVM, Loureiro S, Bastos AC. 2019. Influence of biochar particle size on biota responses. Ecotox Environ Safe. 174:120–128.
  • Quilliam RS, Glanville HC, Wade SC, Jones DL. 2013. Life in the 'charosphere' – does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem. 65:287–293.
  • Renner R. 2007. Rethinking biochar. Environ Sci Technol. 41(17):5 932–5 933.
  • Salam MMA, Mohsin M, Kaipiainen E, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Pappinen A. 2019. Biomass growth variation and phytoextraction potential of four Salix varieties grown in contaminated soil amended with lime and wood ash. Int J Phytoremediation. 21(13):1329–1340. doi:10.1080/15226514.2019.1633257.
  • Shan R, Shi Y, Gu J, Wang Y, Yuan H. 2020. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chines J Chem Eng. 28(5):1375–1383.
  • Shen X, Huang DY, Ren XF, Zhu HH, Wang S, Xu C, He YB, Luo ZC, Zhu QH. 2016. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. J Environ Manage. 168:245–251. doi:10.1016/j.jenvman.2015.12.019.
  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Macedo JLV, deBlum WEH, Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil. 291(1–2):275–290. doi:10.1007/s11104-007-9193-9.
  • Tan L, Ma Z, Yang K, Cui Q, Wang K, Wang T, Wu GL, Zheng J. 2019. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars. Sci Total Environ. 699:134–143.
  • Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Luo L, Yang Y, Huang H, Chen A. 2020. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ. 701:134751. doi:10.1016/j.scitotenv.2019.134751.
  • Tong X, Li J, Yuan J, Xu R. 2011. Adsorption of Cu (II) by biochars generated from three crop straws. Chem Eng J. 172(2–3):828–834.
  • Tryon EH. 1948. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monog. 18(1):81–115. doi:10.2307/1948629.
  • Wang D, Zhang W, Zhou D. 2013. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environ Sci Technol. 47(10):5154–5161. doi:10.1021/es305337r.
  • Wang Y, Ji H, Lyu H, Liu Y, He L, You L, Zhou C, Yang M. 2019. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in after amendment with Fe-Mn-modified Lolium multiflorum Lam. Biochar J Clean Prod. 231:556–564.
  • Waqas M, KhanAL, KangS-M, KimY-H, LeeI-J. 2014. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils. 50(7):1155–1167.
  • Welch RM, Shuman L. 1995. Micronutrient nutrition of plants. Crit Rev Plant Sci. 14(1):49–82.
  • Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL. 2010. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem. 58(11):6767–6773. doi:10.1021/jf100017e.
  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K. 2015. Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol. 45(9):939–969.
  • Xu X, Yang B, Qin G, Wang H, Zhu Y, Zhang K, Yang H. 2019. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture. Environ Sci Pollut Res Int. 26(19):19770–19784. doi:10.1007/s11356-019-05331-7.
  • Yang J, Yang F, Yang Y, Xing G, Deng C, Shen Y, Luo L, Li B, Yuan H. 2016. A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ Pollut. 213:760–769.
  • Zhang G, Guo X, Zhao Z, He Q, Wang S, Zhu Y, Yan Y, Liu X, Sun K, Zhao Y, et al. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut. 218:513–522. doi:10.1016/j.envpol.2016.07.031.
  • Zhang H, Zhang YL, Wang ZF, Ding MJ, Jiang YH, Xie ZL. 2016. Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China. Sci Total Environ. 573:915–923. doi:10.1016/j.scitotenv.2016.08.128.
  • Zhao R, Coles N, Kong Z, Wu J. 2015. Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil till Res. 146:133–138.
  • Zheng R, Li C, Sun G, Xie Z, Chen J, Wu J, Wang Q. 2017. The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Environ Sci Pollut Res Int. 24(28):22340–22352. doi:10.1007/s11356-017-9854-z.
  • Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Arp HPH, Sun GX. 2012. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere. 89(7):856–862. doi:10.1016/j.chemosphere.2012.05.008.
  • Zimmerman AR, Gao B, Ahn MY. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem. 43(6):1169–1179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.