301
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using Zea mays L. in contrasting textured soils

, , ORCID Icon, , &

References

  • Afandi Y, Tejowulan RS, Baiq DK. 2019. Mercury uptake by Zea mays L. grown on an inceptisol polluted by amalgamation and cyanidation tailings of small-scale gold mining. J Degrade Min Land Manage. 6(3):1821–1828. doi:10.15243/jdmlm.2019.063.1821.
  • Alexander J, Audunsson GA, Benford D, Cockburn A, Cravedi J, Dogliotti E, Domenico AD, Fernandezcruz ML, Finkgremmels J, Furst P. 2008. Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission on marine biotoxines in shellfish okadaic acid and analogues. EFSA J. 589:1–62.
  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Al-Solaimani SG, et al. 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineer J. 396:125195. doi:10.1016/j.cej.2020.125195.
  • Baccot C, Pallier V, Thom MT, Thuret-Benoist H, Feuillade-Cathalifaud G. 2020. Valorization of extracted organic matter from municipal solid waste leachate: application to soils from France and Togo. Waste Manag. 102:161–169. doi:10.1016/j.wasman.2019.10.040.
  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut. 186:195–202. doi:10.1016/j.envpol.2013.11.026.
  • Natasha, Bibi I, Shahid M, Niazi NK, Younas F, Naqvi SR, Shaheen SM, Imran M, Wang H, Hussaini KM, Zhang H. 2021. Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. J Hazard Mater. 402:124074.
  • Brandstetter A, Lombi E, Wenzel WW. 2000. Arsenic-contaminated soils: I. Risk assessment. In: Wise DL, Tarantolo DJ, Cichon EJ, Inyan HI, Stottmeister U, editors. Remediation Engineering of Contaminated Soils. New York: Marcel Dekker. p. 715–737.
  • Buelt JL, Thompson LE. 1992. The in situ vitrification integrated program: focusing an innovative solution on environmental restoration needs. Richland, WA (United States): Pacific Northwest Lab.
  • Chattopadhyay A, Singh AP, Singh SK, Barman A, Patra A, Mondal BP, Banerjee K. 2020. Spatial variability of arsenic in Indo-Gangetic basin of Varanasi and its cancer risk assessment. Chemosphere. 238:124623 doi:10.1016/j.chemosphere.2019.124623.
  • Chen Z, Ai Y, Fang C, Wang K, Li W, Liu S, Li C, Xiao J, Huang Z. 2014. Distribution and phytoavailability of heavy metal chemical fractions in artificial soil on rock cut slopes alongside railways. J Hazard Mater. 273:165–173. doi:10.1016/j.jhazmat.2014.03.042.
  • Chen Y, Li X, Shen Z. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere. 57(3):187–196. doi:10.1016/j.chemosphere.2004.05.044.
  • EPA US. 2010. IRIS Toxicological Review Of Inorganic Arsenic (Cancer). Washington (DC): U.S. Environmental Protection Agency. 56012.
  • Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M. 2019. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci Total Environ. 655:328–336. doi:10.1016/j.scitotenv.2018.11.242.
  • Fu J-t, Yu D-m, Chen X, Su Y, Li C-h, Wei Y-p. 2019. Recent research progress in geochemical properties and restoration of heavy metals in contaminated soil by phytoremediation. J Mt Sci. 16(9):2079–2095. doi:10.1007/s11629-017-4752-x.
  • Gaurav GK, Mehmood T, Cheng L, Klemes JJ, Shrivastava DK. 2020. Water hyacinth as a biomass: a review. J Clean Prod. 277:122214. doi:10.1016/j.jclepro.2020.122214.
  • Ghosh M, Singh S. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ. 6:18.
  • Gonzalez A, Garcia-Gonzalo P, Gil-Diaz MM, Alonso J, Lobo MC. 2019. Compost-assisted phytoremediation of As-polluted soil. J Soils Sediments. 19(7):2971–2983. doi:10.1007/s11368-019-02284-9.
  • Gregory SJ, Anderson CWN, Camps Arbestain M, McManus MT. 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agri Ecosyst Environ. 191:133–141. doi:10.1016/j.agee.2014.03.035.
  • Hou M, Li M, Yang X, Pan R. 2019. Responses of nonprotein thiols to stress of vanadium and mercury in maize (Zea mays L.) seedlings. Bull Environ Contam Toxicol. 102(3):425–431. doi:10.1007/s00128-019-02553-w.
  • Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, et al. 2021. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. J Hazard Mater. 403:124027 doi:10.1016/j.jhazmat.2020.124027.
  • Irem S, Islam E, Maathuis FJ, Niazi NK, Li T. 2019. Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: effect of soil amendments. Chemosphere. 225:104–114. doi:10.1016/j.chemosphere.2019.02.202.
  • Jang A, Choi Y, Kim S. 1998. Batch and column tests for the development of an immobilization technology for toxic heavy metals in contaminated soils of closed mines. Water Sci Technol. 37(8):81–88. doi:10.2166/wst.1998.0311.
  • Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D. 2019. Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov. 13:264–276. doi:10.1016/j.eti.2018.12.007.
  • Komarek M, Tlustos P, Szakova J, Chrastny V, Ettler V. 2007. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere. 67(4):640–651. doi:10.1016/j.chemosphere.2006.11.010.
  • Li Y, Guan J, Zhao J, Li B, Li Y-f, Gao Y. 2020. Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Ecotoxicol Environ Saf. 188:109897 doi:10.1016/j.ecoenv.2019.109897.
  • Lin HT, Wang M, Seshaiah K. 2008. Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost. Chemosphere. 71(4):742–749. doi:10.1016/j.chemosphere.2007.10.022.
  • Liu C, Lu J, Liu J, Mehmood T, Chen W. 2020. Effects of lead (Pb) in stormwater runoff on the microbial characteristics and organics removal in bioretention systems. Chemosphere. 253:126721. doi:10.1016/j.chemosphere.2020.126721.
  • Liu X, Zhang W, Hu Y, Hu E, Xie X, Wang L, Cheng H. 2015. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere. 119:273–281. doi:10.1016/j.chemosphere.2014.06.067.
  • Ma J, Lei E, Lei M, Liu Y, Chen T. 2018. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere. 194:737–744. doi:10.1016/j.chemosphere.2017.11.135.
  • Mandal P. 2017. An insight of environmental contamination of arsenic on animal health. Emerg Contamin. 3(1):17–22. doi:10.1016/j.emcon.2017.01.004.
  • McGrath SP, Zhao F-J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14(3):277–282. doi:10.1016/s0958-1669(03)00060-0.
  • Mehmood T, Bibi I, Shahid M, Niazi NK, Murtaza B, Wang HL, Ok YS, Sarkar B, Javed MT, Murtaza G. 2017. Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J Geochem Explor. 178:83–91. doi:10.1016/j.gexplo.2017.03.018.
  • Mikutta C, Kretzschmar R. 2011. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environ Sci Technol. 45(22):9550–9557. doi:10.1021/es202300w.
  • Miller RO. 1998. Nitric-perchloric acid wet digestion in an open vessel. In: Kalr, YP, editor. Handbook of reference methods for plant analysis. Boca Raton (FL): CRC Press. p. 57–61.
  • Moreno-Jimenez E, Clemente R, Mestrot A, Meharg AA. 2013. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environ Pollut. 173:238–244. doi:10.1016/j.envpol.2012.10.017.
  • Moslehi A, Feizian M, Higueras P, Eisvand HR. 2019. Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). Int J Phytoremediation. 21(3):191–199. doi:10.1080/15226514.2018.1501336.
  • National Research Council. 1999. Arsenic in drinking water. Washington (DC): National Academies Press.
  • NFHPC. 2012. China food safety national standard for maximum levels of contaminants in foods. Beijing: National Health and Family Planning of People’s Republic of China. GB 2762–2012.
  • Niazi NK, Bashir S, Bibi I, Murtaza B, Shahid M, Javed MT, Shakoor MB, Saqib ZA, Nawaz MF, Aslam Z. 2016. Phytoremediation of arsenic-contaminated soils using arsenic hyperaccumulating ferns, Phytoremediation. Switzerland: Springer. p. 521–545.
  • Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA, et al. 2017. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. Int J Phytoremediation. 19(7):670–678. doi:10.1080/15226514.2016.1278427.
  • Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Farrakh Nawaz M, et al. 2018. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ. 621:1642–1651. doi:10.1016/j.scitotenv.2017.10.063.
  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG. 2011. Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Int J Phytoremediation. 13(9):912–932. doi:10.1080/15226514.2011.568023.
  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG. 2012. Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res. 19:3506–3515. doi:10.1007/s11356-012-0910-4.
  • Nissim WG, Cincinelli A, Martellini T, Alvisi L, Palm E, Mancuso S, Azzarello E. 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 164:356–366. doi:10.1016/j.envres.2018.03.009.
  • NRC. 2001. Nutrient requirements of dairy cattle. National Research Council. 7th rev ed. Washington (DC): The National Academies Press. doi:10.17226/9825.
  • Palansooriya KN, Shaheen SM, Chen SS, Tsang DC, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int. 134:105046 doi:10.1016/j.envint.2019.105046.
  • Petruzzelli G, Pedron F, Rosellini I, Barbafieri M. 2013. Phytoremediation towards the future: focus on bioavailable contaminants, Plant-based remediation processes. Berlin, Heidelberg: Springer. p. 273–289.
  • Ranieri E, Moustakas K, Barbafieri M, Ranieri AC, Herrera‐Melián JA, Petrella A, Tommasi F. 2020. Phytoextraction technologies for mercury‐and chromium‐contaminated soil: a review. J Chem Technol Biotechnol. 95(2):317–327. doi:10.1002/jctb.6008.
  • Requejo R, Tena M. 2005. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry. 66(13):1519–1528. doi:10.1016/j.phytochem.2005.05.003.
  • Riaz U, Murtaza G, Farooq M, Aziz H, Qadir AA, Mehdi SM, Qazi MA. 2020. Chemical fractionation and risk assessment of trace elements in sewage sludge generated from various states of Pakistan. Environ Sci Pollut Res. 27:39742–39752. doi:10.1007/s11356-020-07795-4.
  • Shakoor MB, Ali S, Rizwan M, Abbas F, Bibi I, Riaz M, Khalil U, Niazi NK, Rinklebe J. 2020. A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytoremediation. 22(2):111–126. doi:10.1080/15226514.2019.1647405.
  • Shehata E, Liu Y, Feng Y, Cheng D, Li Z. 2019. Changes in arsenic and copper bioavailability and oxytetracycline degradation during the composting process. Molecules. 24(23):4240. doi:10.3390/molecules24234240.
  • Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, Von Ehrenstein OS, Steinmaus C, Bates MN, Selvin S. 2006. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Persp. 114(8):1293–1296. doi:10.1289/ehp.8832.
  • Suthar V, Memon KS, Mahmood-Ul-Hassan M. 2014. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environ Monit Assess. 186(6):3957–3968. doi:10.1007/s10661-014-3671-3.
  • Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FMG, Vangronsveld J. 2010. Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: effect on the farmer's income. Int J Phytoremediation. 12(7):650–662. doi:10.1080/15226514.2010.493187.
  • Ulm F, Avelar D, Hobson P, Penha-Lopes G, Dias T, Máguas C, Cruz C. 2019. Sustainable urban agriculture using compost and an open-pollinated maize variety. J Clean Prod. 212:622–629. doi:10.1016/j.jclepro.2018.12.069.
  • Verbeeck M, Thiry Y, Smolders E. 2020. Soil organic matter affects arsenic and antimony sorption in anaerobic soils. Environ Pollut. 257:113566. doi:10.1016/j.envpol.2019.113566.
  • Wei S, Zhang H, Tao S. 2019. A review of arsenic exposure and lung cancer. Toxicol Res. 8(3):319–327. doi:10.1039/c8tx00298c.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology. 2011:1–20. doi:10.5402/2011/402647.
  • Zhang Y, Banks C. 2006. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Res. 40(4):788–798. doi:10.1016/j.watres.2005.12.011.
  • Zhang J, Tian Y, Zhang J, Li N, Kong L, Yu M, Zuo W. 2017. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ Sci Pollut Res Int. 24(6):5118–5125. doi:10.1007/s11356-016-6313-1.
  • Zhuang P, Yang Q, Wang H, Shu W. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 184(1–4):235–242. doi:10.1007/s11270-007-9412-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.