321
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) and glutathione (GSH) on Isatis cappadocica, under Arsenic (As) toxicity

, ORCID Icon &

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M., Natasha  . 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Publ Health. 15(1):59. doi:10.3390/ijerph15010059.
  • Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126.
  • Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M. 2018. Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul. 37(1):309–322. doi:10.1007/s00344-017-9730-6.
  • Ahmad P, Alam P, Balawi TH, Altalayan FH, Ahanger MA, Ashraf M. 2020. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere. 244:125480. doi:10.1016/j.chemosphere.2019.125480.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling. J Exp Bot. 65(5):1229–1240. doi:10.1093/jxb/ert375.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Chance B, Maehly AC. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764–775.
  • Chandrakar V, Naithani SC, Keshavkant S. 2016. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia. 71(4):367–377. doi:10.1515/biolog-2016-0052.
  • Chen GX, Asada K. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:978–998. doi:10.1093/oxfordjournals.pcp.a077844.
  • Chen H-J, Huang C-S, Huang G-J, Chow T-J, Lin Y-H. 2013. NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J Plant Physiol. 170(17):1471–1483. doi:10.1016/j.jplph.2013.05.015.
  • Corpas FJ, Barroso JB. 2014. NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci. 2:55. doi:10.3389/fenvs.2014.00055.
  • Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, Petutschnig E, Rozhon W, Heuck A, Clausen T, Jonak C. 2012. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell. 24(8):3380–3392. doi:10.1105/tpc.112.101279.
  • Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D. 2013. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater. 262:1123–1131. doi:10.1016/j.jhazmat.2012.06.049.
  • de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ. 2017. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. J Plant Physiol. 218:196–205. doi:10.1016/j.jplph.2017.08.007.
  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, et al. 2015. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater. 298:241–251. doi:10.1016/j.jhazmat.2015.06.008.
  • Duan G-L, Hu Y, Liu W-J, Kneer R, Zhao F-J, Zhu Y-G. 2011. Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot. 71:416–421. doi:10.1016/j.envexpbot.2011.02.016.
  • Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1):70–77. doi:10.1016/0003-9861(59)90090-6.
  • Farooq MA, Niazi AK, Akhtar J, Saifullah Farooq M, Souri Z, Karimi N, Rengel Z. 2019. Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem. 141:353–369. doi:10.1016/j.plaphy.2019.04.039.
  • Flora SJS. 2011. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 51(2):257–281. doi:10.1016/j.freeradbiomed.2011.04.008.
  • Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133(1):21–25. doi:10.1007/bf00386001.
  • Foyer CH, Noctor G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plantarum. 119(3):355–364. doi:10.1034/j.1399-3054.2003.00223.x.
  • Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 17(7):1866–1875. doi:10.1105/tpc.105.033589.
  • Frederickson Matika DE, Loake GJ. 2014. Redox regulation in plant immune function. Antioxid Redox Signal. 21(9):1373–1388. doi:10.1089/ars.2013.5679.
  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell. 16(8):2176–2191. doi:10.1105/tpc.104.023036.
  • Ghiani A, Fumagalli P, Nguyen Van T, Gentili R, Citterio S. 2014. The combined toxic and genotoxic effects of Cd and As to plant bioindicator Trifolium repens L. PLoS One. 9(6):e99239. doi:10.1371/journal.pone.0099239.
  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. 2013. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem. 70:204–212. doi:10.1016/j.plaphy.2013.05.032.
  • Gomes MP, Moreira Duarte D, Silva Miranda PL, Carvalho Barreto L, Matheus MT, Garcia QS. 2012. The effects of arsenic on the growth and nutritional status of Anadenanthera peregrina, a Brazilian savanna tree. Z Pflanzenernähr Bodenk. 175(3):466–473. doi:10.1002/jpln.201100195.
  • Guo J, Xu W, Ma M. 2012. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater. 199–200:309–313. doi:10.1016/j.jhazmat.2011.11.008.
  • Gupta DK, Inouhe M, Rodríguez-Serrano M, Romero-Puertas MC, Sandalio LM. 2013. Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere. 90(6):1987–1996. doi:10.1016/j.chemosphere.2012.10.066.
  • Habiba U, Ali S, Rizwan M, Ibrahim M, Hussain A, Shahid MR, Alamri SA, Alyemeni MN, Ahmad P. 2019. Alleviative role of exogenously applied mannitol in maize cultivars differing in chromium stress tolerance. Environ Sci Pollut Res Int. 26(5):5111–5121. doi:10.1007/s11356-018-3970-2.
  • Hare V, Chowdhary P, Kumar B, Sharma DC, Baghel VS. 2018. Arsenic toxicity and its remediation strategies for fighting the environmental threat. In: Emerging and eco-friendly approaches for waste management. Singapore: Springer; p. 143–170.
  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants. 23(2):249–268. doi:10.1007/s12298-017-0422-2.
  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M. 2018. Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact. 13(1):203–212. doi:10.1080/17429145.2018.1458913.
  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO. 2011. Plant metallothioneins-metal chelators with ROS scavenging activity? Plant Biol (Stuttg). 13(2):225–232. doi:10.1111/j.1438-8677.2010.00398.x.
  • Hayashi S, Tanikawa H, Kuramata M, Abe T, Ishikawa S. 2020. Domain exchange between Oryza sativa phytochelatin synthases reveals a region that determines responsiveness to arsenic and heavy metals. Biochem Biophys Res Commun. 523(2):548–553. doi:10.1016/j.bbrc.2019.12.093.
  • He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo Z-B. 2015. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol. 205(1):240–254. doi:10.1111/nph.13013.
  • Huang Y, Hatayama M, Inoue C. 2011. Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L. Planta 234(6):1275–1284.
  • Huang J, Zhang Y, Peng J-S, Zhong C, Yi H-Y, Ow DW, Gong J-M. 2012. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol. 158(4):1779–1788. doi:10.1104/pp.111.192872.
  • Huang Y, Zhu Z, Wu X, Liu Z, Zou J, Chen Y, Su N, Cui J. 2019. Lower cadmium accumulation and higher antioxidative capacity in edible parts of Brassica campestris L. seedlings applied with glutathione under cadmium toxicity. Environ Sci Pollut Res Int. 26(13):13235–13245. doi:10.1007/s11356-019-04745-7.
  • Iori V, Pietrini F, Massacci A, Zacchini M. 2012. Induction of metal binding compounds and antioxidative defence in callus cultures of two black poplar (P. nigra) clones with different tolerance to cadmium. Plant Cell Tiss Organ Cult. 108(1):17–26. doi:10.1007/s11240-011-0006-8.
  • Jakubowska D, Janicka-Russak M, Kabała K, Migocka M, Reda M. 2015. Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci. 234:50–59. doi:10.1016/j.plantsci.2015.02.005.
  • Janků M, Luhová L, Petřivalský M. 2019. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants (Basel). 8(4):105. doi:10.3390/antiox8040105.
  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A. 2012. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 13(3):3145–3175. doi:10.3390/ijms13033145.
  • Jung H-I, Kong M-S, Lee B-R, Kim T-H, Chae M-J, Lee E-J, Jung G-B, Lee C-H, Sung J-K, Kim Y-H. 2019. Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate-glutathione homeostasis in rice seedlings. Front Plant Sci. 10:1089–1089. doi:10.3389/fpls.2019.01089.
  • Karimi N, Ghaderian SM, Maroofi H, Schat H. 2010. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int J Phytoremediation. 12(2):159–173. doi:10.1080/15226510903213977.
  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA. 2009. An arsenic-accumulating, hypertolerant brassica, Isatis capadocica. New Phytol. 184(1):41–47. doi:10.1111/j.1469-8137.2009.02982.x.
  • Karimi N, Souri Z. 2015. Effect of phosphorus on arsenic accumulation and detoxification in arsenic hyperaccumulator, Isatis cappadocica. J Plant Growth Regul. 34(1):88–95. doi:10.1007/s00344-014-9445-x.
  • Karimi N, Souri Z. 2016. Antioxidant enzymes and compounds complement each other during arsenic detoxification in shoots of Isatis cappadocica Desv. Chem Ecol. 32(10):937–951. doi:10.1080/02757540.2016.1236087.
  • Karimi N, Vakilipak F, Souri Z, Farooq MA, Akhtar J. 2019. The role of selenium on mitigating arsenic accumulation, enhancing growth and antioxidant responses in metallicolous and non-metallicolous population of Isatis cappadocica Desv. and Brassica oleracea L. Environ Sci Pollut Res Int. 26(21):21704–21716. doi:10.1007/s11356-019-05392-8.
  • Kaur G, Sharma A, Guruprasad K, Pati PK. 2014. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv. 32(3):551–563. doi:10.1016/j.biotechadv.2014.02.002.
  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P. 2019. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere. 225:627–638. doi:10.1016/j.chemosphere.2019.03.026.
  • Kim Y-O, Bae H-J, Cho E, Kang H. 2017. Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front Plant Sci. 8:683–683. doi:10.3389/fpls.2017.00683.
  • Kong FX, Hu W, Chao SY, Sang WL, Wang LS. 1999. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ Exp Bot. 42(3):201–209. doi:10.1016/S0098-8472(99)00034-9.
  • Kushwaha BK, Singh S, Tripathi DK, Sharma S, Prasad SM, Chauhan DK, Kumar V, Singh VP. 2019. New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mater. 361:134–140. doi:10.1016/j.jhazmat.2018.08.035.
  • Lin A, Zhang X, Zhu YG, Zhao FJ. 2008. Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environ Toxicol Chem. 27(2):413–419. doi:10.1897/07-266R.1.
  • Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol. 50(2):129–140. doi:10.1111/j.1744-7909.2007.00608.x.
  • Liu J, Wang X, Hu Y, Hu W, Bi Y. 2013. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. Plant Cell Rep. 32(3):415–429. doi:10.1007/s00299-012-1374-1.
  • Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T. 2007. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol. 64(1–2):49–58. doi:10.1007/s11103-007-9133-3.
  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B. 2005. Arsenic contamination and its risk management in complex environmental settings. Adv Agronomy. 86:1–82.
  • Marino D, Dunand C, Puppo A, Pauly N. 2012. A burst of plant NADPH oxidases. Trends Plant Sci. 17(1):9–15. doi:10.1016/j.tplants.2011.10.001.
  • Marino D, González EM, Frendo P, Puppo A, Arrese-Igor C. 2007. NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase. Planta. 225(2):413–421. doi:10.1007/s00425-006-0354-5.
  • Mishra S, Dwivedi S, Mallick S, Tripathi RD. 2019. Redox homeostasis in plants under arsenic stress. In: Panda S, Yamamoto Y, editors. Redox Homeostasis in Plants. Signaling and communication in plants. Cham: Springer; p. 179–198.
  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L. 2012. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem. 57:15–22. doi:10.1016/j.plaphy.2012.05.002.
  • Mostofa MG, Seraj ZI, Fujita M. 2014. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma. 251(6):1373–1386. doi:10.1007/s00709-014-0639-7.
  • Ngole-Jeme VM, Fantke P. 2017. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS One. 12(2):e0172517. doi:10.1371/journal.pone.0172517.
  • Noctor G, Queval G, Gakière B. 2006. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot. 57(8):1603–1620. doi:10.1093/jxb/erj202.
  • PÉRez-Chaca MV, RodrÍGuez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC. 2014. Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ. 37(7):1672–1687. doi:10.1111/pce.12280.
  • Qiu B, Zeng F, Cai S, Wu X, Haider SI, Wu F, Zhang G. 2013. Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. J Plant Physiol. 170(8):772–779. doi:10.1016/j.jplph.2013.01.016.
  • Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M. 2015. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res Int. 2015:340812–340812. doi:10.1155/2015/340812.
  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A. 2010. Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Functional Plant Biol. 37(6):532. doi:10.1071/FP09194.
  • Rizwan M, Ali S, Ur Rehman MZ, Malik S, Adrees M, Qayyum MF, Alamri SA, Alyemeni MN, Ahmad P. 2019. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant. 41:35. doi:10.1007/s11738-019-2828-7.
  • Rohman MM, Hossain MD, Suzuki T, Takada G, Fujita M. 2009. Quercetin-4′-glucoside: a physiological inhibitor of the activities of dominant glutathione S-transferases in onion (Allium cepa L.) bulb. Acta Physiol Plant. 31(2):301–309. doi:10.1007/s11738-008-0234-7.
  • Sakai Y, Watanabe T, Wasaki J, Senoura T, Shinano T, Osaki M. 2010. Influence of arsenic stress on synthesis and localization of low-molecular-weight thiols in Pteris vittata. Environ Pollut. 158(12):3663–3669. doi:10.1016/j.envpol.2010.07.043.
  • Scharte J, Schön H, Tjaden Z, Weis E, von Schaewen A. 2009. Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. Proc Natl Acad Sci U S A. 106(19):8061–8066. doi:10.1073/pnas.0812902106.
  • Sedlak J, Lindsay RH. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 25(1):192–205. doi:10.1016/0003-2697(68)90092-4.
  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. 2012. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35(2):334–346. doi:10.1111/j.1365-3040.2011.02338.x.
  • Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernández-Zapata JC, Martínez Nicolás JJ, Garcia-Sanchez F. 2019. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol Environ Saf. 180:588–599. doi:10.1016/j.ecoenv.2019.05.037.
  • Sharma I. 2012. Arsenic induced oxidative stress in plants. Biologia. 67(3):447–453. doi:10.2478/s11756-012-0024-y.
  • Sharma SS, Dietz K-J. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14(1):43–50. doi:10.1016/j.tplants.2008.10.007.
  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, et al. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf. 72(4):1102–1110. doi:10.1016/j.ecoenv.2008.09.022.
  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK. 2012. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep. 31(9):1687–1699. doi:10.1007/s00299-012-1283-3.
  • Siddappaji MH, Scholes DR, Bohn M, Paige KN. 2013. Overcompensation in response to herbivory in Arabidopsis thaliana: the role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway. Genetics. 195(2):589–598. doi:10.1534/genetics.113.154351.
  • Sil P, Das P, Biswas S, Mazumdar A, Biswas AK. 2019. Modulation of photosynthetic parameters, sugar metabolism, polyamine and ion contents by silicon amendments in wheat (Triticum aestivum L.) seedlings exposed to arsenic. Environ Sci Pollut Res Int. 26(13):13630–13648. doi:10.1007/s11356-019-04896-7.
  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, et al. 2015. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci. 6:1272–1272. doi:10.3389/fpls.2015.01272.
  • Son K-H, Kim D-Y, Koo N, Kim K-R, Kim J-G, Owens G. 2012. Detoxification through phytochelatin synthesis in Oenothera odorata exposed to Cd solutions. Environ Exp Bot. 75:9–15. doi:10.1016/j.envexpbot.2011.08.011.
  • Souri Z, Karimi N, de Oliveira LM. 2018. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environ Technol. 39(10):1316–1327. doi:10.1080/09593330.2017.1329349.
  • Souri Z, Karimi N, Farooq MA, Sandalio LM. 2020. Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv. Shoots by enhancing antioxidant defenses. Chemosphere. 239:124523. doi:10.1016/j.chemosphere.2019.124523.
  • Souri Z, Karimi N, Sandalio LM. 2017. Arsenic hyperaccumulation strategies: an overview. Front Cell Dev Biol. 5:67–67. doi:10.3389/fcell.2017.00067.
  • Souri Z, Karimi N. 2017. Enhanced phytoextraction by as hyperaccumulator Isatis cappadocica spiked with sodium nitroprusside. Soil Sediment Contam Int J. 26(4):457–468. doi:10.1080/15320383.2017.1326457.
  • Stoeva N, Berova M, Zlatev Z. 2005. Effect of arsenic on some physiological parameters in bean plants. Biologia Plant. 49(2):293–296. doi:10.1007/s10535-005-3296-z.
  • Sytykiewicz H. 2016. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Biochem Biophys Res Commun. 476(2):90–95. doi:10.1016/j.bbrc.2016.05.050.
  • Talukdar D. 2011. Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci. 3(2):116–123.
  • Talukdar D. 2012. Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris medic. Seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol. 15(4):325–334. doi:10.1007/s12892-012-0065-3.
  • Talukdar D. 2013. Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants. 19(1):69–79. doi:10.1007/s12298-012-0140-8.
  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD. 2012. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf. 79:189–198. doi:10.1016/j.ecoenv.2011.12.019.
  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK. 2012. Arsenomics: omics of arsenic metabolism in plants. Front Physiol. 3:275–275. doi:10.3389/fphys.2012.00275.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151(1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV. 2017. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem. 110:59–69. doi:10.1016/j.plaphy.2016.08.022.
  • Wang F, Chen F, Cai Y, Zhang G, Wu F. 2011. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd Stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res. 144(1–3):1275–1288. doi:10.1007/s12011-011-9121-y.
  • Wang G-F, Li W-Q, Li W-Y, Wu G-L, Zhou C-Y, Chen K-M. 2013. Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci. 14(5):9440–9458. doi:10.3390/ijms14059440.
  • Wang M, Zhao X, Xiao Z, Yin X, Xing T, Xia G. 2016. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Mol Biol. 91(1–2):115–130. doi:10.1007/s11103-016-0446-y.
  • Yao Y, Xu G, Mou D, Wang J, Ma J. 2012. Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese. Chemosphere. 89(2):150–157. doi:10.1016/j.chemosphere.2012.05.030.
  • Yuan H, Zhang Y, Huang S, Yang Y, Gu C. 2015. Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. Chinensis. Environ Sci Pollut Res Int. 22(4):2808–2816. doi:10.1007/s11356-014-3535-y.
  • Zhao F-J, McGrath SP, Meharg AA. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 61(1):535–559. doi:10.1146/annurev-arplant-042809-112152.
  • Zlobin IE, Kartashov AV, Shpakovski GV. 2017. Different roles of glutathione in copper and zinc chelation in Brassica napus roots. Plant Physiol Biochem. 118:333–341. doi:10.1016/j.plaphy.2017.06.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.