237
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Improved of growth and phytostabilization potential of lead (Pb) in Glebionis coronaria L. under the effect of IAA and GA3 alone and in combination with EDTA by altering biochemical attributes of stressed plants

ORCID Icon, , &

References

  • Abou-Shanab RA, Tammam AA, El-Aggan WH, Mubarak MM. 2017. Phytoremediation potential of wild plants collected from heavy metals contaminated soils. Int J Geol Agri Environ Sci. 5:15–19.
  • Abou-Shanab RA. 2011. Bioremediation: new approaches and trends. In: Khan MS, editor. Biomanagement of metal-contaminated soils. Environmental pollution. NY, USA: Springer Publications. p. 65–94.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30(3):161–175. doi:10.3109/07388550903524243.
  • Alzahrani Y, Alharby H, Hakeem K, Alsamadany H. 2020. Modulating effect of EDTA and SDS on growth, biochemical parameters, and antioxidant defense system of Dahlia variabilis grown under cadmium and lead-induced stress. Not Bot Horti Agrobo. 48(2):906–923. doi:10.15835/nbha48211909.
  • Anjum AN, Umar S, Iqbal M. 2014. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation. Environ Sci Pollut Res Int. 21(17):10286–10293. doi:10.1007/s11356-014-2889-5.
  • Barrutia O, Garbisu C, Hernandez-Allica J, Garcia-Plazaola JI, Becerril JM. 2010. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut. 158(5):1710–1717. doi:10.1016/j.envpol.2009.11.027.
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161(2):559–566. doi:10.1016/0003-2697(87)90489-1.
  • Chen L, Wang D, Long C, Cui ZX. 2019. Effect of plant growth regulations on phytoremediation of uranium and cadmium contaminated soil by Zebrina pendula schnizl. Fresenius Environ Bull. 28(2A):1434–1442.
  • De Pinto MC, Francis D, de Gara L. 1999. The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma. 209(1–2):90–97. doi:10.1007/BF01415704.
  • Dhindsa R, Plumb-Dhinds P, Thorpe T. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101. doi:10.1093/jxb/32.1.93.
  • Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C. 2008. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ. 401(1–3):21–28. doi:10.1016/j.scitotenv.2008.03.024.
  • Farouk SN, Muhammad A. 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Eco Environ Sci. 3(4):265–268.
  • Fotopoulos V, Ziogas V, Tanou G, Molassiotis A. 2010. Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defense mechanisms under a biotic stress condition. In: Anjum NA, Chan M, Umar S, editors. Ascorbate glutathione pathway and stress tolerance in plants. Netherlands: Springer. p. 265–302.
  • Gossett DR, Millhollon EP, Lucas MC. 1994. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci. 34(3):706–714. doi:10.2135/cropsci1994.0011183X003400030020x.
  • Griffith OW. 1980. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridone. Anal Biochem. 106(1):207–212. doi:10.1016/0003-2697(80)90139-6.
  • Hac-Wydro K, Aleksandra S, Jabłonska K. 2016. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead (II) ions in the organization of model lipid membranes. Colloids Surf B Biointerfaces. 143:124–130.
  • Halliwell B, Foyer CH. 1978. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta. 139(1):9–17. doi:10.1007/BF00390803.
  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. 2017. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. IJMS. 18(1):200. doi:10.3390/ijms18010200.
  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 10:800. doi:10.3389/fpls.2019.00800.
  • Huang JW, Chen J, Berti WR, Cunningham SD. 1997. Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 31(3):800–805. doi:10.1021/es9604828.
  • Israr M, Jewell A, Kumar D, Sahi SV. 2011. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater. 186(2–3):1520–1526. doi:10.1016/j.jhazmat.2010.12.021.
  • Katoh M, Masaki S, Sato T. 2012. Single-step extraction to determine soluble lead levels in soil. Int J Geomate. 3(6):375–380.
  • Liphadzi MS, Kirkham MB, Paulsen GM. 2006. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol. 27(6):695–704. doi:10.1080/09593332708618683.
  • Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q. 2007. Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA. Bull Environ Contam Toxicol. 78(3–4):280–283. doi:10.1007/s00128-007-9121-y.
  • López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL. 2005. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere. 61(4):595–598. doi:10.1016/j.chemosphere.2005.02.028.
  • Mannervik B, Guthenberg C. 1981. Glutathione transferase (Human placenta). Methods Enzymol. 77:231–235. doi:10.1016/s0076-6879(81)77030-7.
  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem. 44(1):25–37. doi:10.1016/j.plaphy.2006.01.007.
  • Mohd I, Shivendra VS. 2008. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Environ Pollut. 153:29–36.
  • Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. 2016. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res Int. 23(21):21206–21218. doi:10.1007/s11356-016-7295-8.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Patterson BD, Payne LA, Chen Y, Graham D. 1984. An inhibitor of catalase induced by cold in chilling-sensitive plants. Plant Physiol. 76(4):1014–1018. doi:10.1104/pp.76.4.1014.
  • Singh S, Singh A, Bashri G, Prasad SM. 2016. Impact of Cd stress on cellular functioning and its amelioration by phytohormones: an overview on regulatory network. Plant Growth Regul. 80(3):253–263. doi:10.1007/s10725-016-0170-2.
  • Sokal RR, Rohlf FJ. 1995. Biometry: The principles and practice of statistics in biological research. 3rd ed. New York: W. H. Freeman Publishers.
  • Sun S, Zhou X, Cui X, Liu C, Fan Y, McBride MB, Li Y, Li Z, Zhuang P. 2020. Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Regul. 90(1):29–40. doi:10.1007/s10725-019-00548-5.
  • Sytar O, Kumari P, Yadav S, Marian Brestic M, Rastogi A. 2019. Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul. 38(2):739–752. doi:10.1007/s00344-018-9886-8.
  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M. 2008. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere. 71(1):66–73. doi:10.1016/j.chemosphere.2007.10.027.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant system in acid-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151(1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S. 2007. Effects of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot. 61(3):246–253. doi:10.1016/j.envexpbot.2007.06.004.
  • Wang J, Chen J, Pan K. 2012. Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci and Poll Res. 20(3):1441–1449. doi:10.1007/s11356-012-1048-0.
  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater. 174(1–3):1–8. doi:10.1016/j.jhazmat.2009.09.113.
  • Wu W, Wu P, Yang F, Sun D, Zhang D, Yi Z. 2018. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci Total Environ. 630:53–61. doi:10.1016/j.scitotenv.2018.02.183.
  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Muhammad I, Muhammad A, Anjum Z. 2019. Lead toxicity in plants: Impacts and remediation. J Environ Manage. 250:109557. doi:10.1016/j.jenvman.2019.109557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.