217
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Ipomoea carnea: a novel biosorbent for the removal of methylene blue (MB) from aqueous dye solution: kinetic, equilibrium and statistical approach

, , , , &

References

  • Aghamohammadi N, Bin Abdul Aziz H, Isa MH, Zinatizadeh AA. 2007. Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology. Bioresour Technol. 98(18):3570–3578. doi:10.1016/j.biortech.2006.11.037.
  • Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R. 2009. Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J Hazard Mater. 170(1):357–365. doi:10.1016/j.jhazmat.2009.04.087.
  • Ajmani A, Shahnaz T, Narayanan S, Narayanasamy S. 2019. Equilibrium, kinetics and thermodynamics of hexavalent chromium biosorption on pristine and zinc chloride activated Sennasiamea seed pods. Chem and Ecol. 35(4):379–396. doi:10.1080/02757540.2019.1584614.
  • Al-Hakeim HK, AL-DAHAN IM, Al-Hillawi ZH, Bustan RS. 2014. Interaction of prolactin hormone with the surfaces of two new azo compounds. Int J Pharm Pharm Sci. 6:383–397.
  • Aljeboree AM, Alshirifi AN, Alkaim AF. 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 10:S3381–S3393. doi:10.1016/j.arabjc.2014.01.020.
  • Ansari MI, Malik A. 2007. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol. 98(16):3149–3153. doi:10.1016/j.biortech.2006.10.008.
  • Arockiaraj I, Karthikeyan S, Renuga V. 2014. Effects of various carbonization processes in the preparation of nanoporous carbon materials using Ipomoea carnea stem waste for the removal of dyes from textile industrial effluents. J Environ Nanotechnol. 3(2):9–21.
  • Babel S, Kurniawan TA. 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere. 54(7):951–967. doi:10.1016/j.chemosphere.2003.10.001.
  • Banerjee S, Sharma GC, Gautam RK, Chattopadhyaya MC, Upadhyay SN, Sharma YC. 2016. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. J Mol Liq. 213:162–172. doi:10.1016/j.molliq.2015.11.011.
  • Baruah S, Devi A, Bhattacharyya KG, Sarma A. 2017. Developing a biosorbent from Aegle Marmelos leaves for removal of methylene blue from water. Int J Environ Sci Technol. 14(2):341–352. doi:10.1007/s13762-016-1150-9.
  • Bhatnagar A, Sillanpa M. 2010. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J. 157(2–3):277–296. doi:10.1016/j.cej.2010.01.007.
  • Bhattacharyya KG, Sharma A. 2005. Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigm. 65(1):51–59. doi:10.1016/j.dyepig.2004.06.016.
  • Bingol D, Veli S, Zor S, Ozdemir U. 2012. Analysis of adsorption of reactive azo dye onto CuCl2 doped polyaniline using Box–Behnken design approach. Synth Met. 162(17–18):1566–1571. doi:10.1016/j.synthmet.2012.07.011.
  • Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LA, Calvete T. 2012. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater. 241–242:146–153. doi:10.1016/j.jhazmat.2012.09.026.
  • Chandra TS, Mudliar SN, Vidyashankar S, Mukherji S, Sarada R, Krishnamurthi K, Chauhan VS. 2015. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics. Bioresour Technol. 184:395–404. doi:10.1016/j.biortech.2014.10.018.
  • Da Silva DC, de Abreu Pietrobelli JM. 2019. Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: characterization, kinetic, thermodynamic and isotherm studies. J Environ Chem Eng. 7(2):103008. doi:10.1016/j.jece.2019.103008.
  • Dahri MK, Kooh MRR, Lim LB. 2015. Application of Casuarin aequisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alex Eng J. 54(4):1253–1263. doi:10.1016/j.aej.2015.07.005.
  • Daneshvar E, Vazirzadeh A, Niazi A, Sillanpaa M, Bhatnagar A. 2017. A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae–effect of pretreatment. Chem Eng J. 307:435–446. doi:10.1016/j.cej.2016.08.093.
  • Deniz F. 2013. Dye removal by almond shell residues: studies on biosorption performance and process design. Mater Sci Eng C Mater Biol Appl. 33(5):2821–2826. doi:10.1016/j.msec.2013.03.009.
  • Dhakal RP, Ghimire KN, Inoue K. 2005. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy. 79(3–4):182–190. doi:10.1016/j.hydromet.2005.06.007.
  • Dutta S. 2013. Optimization of Reactive Black 5 removal by adsorption process using Box–Behnken design. Desalin Wat Treat. 51(40–42):7631–7638. doi:10.1080/19443994.2013.779597.
  • El-Sayed GO. 2011. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination. 272(1–3):225–232. doi:10.1016/j.desal.2011.01.025.
  • Etim UJ, Umoren SA, Eduok UM. 2016. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc. 20:S67–S76. doi:10.1016/j.jscs.2012.09.014.
  • Evbuomwan B, Alalibo J. 2018. Proximate and ultimate analysis of walnut shell as a potential low cost adsorbent using different activating agents (KOH and H2SO4). Chem Res J. 2(5):124–130.
  • Fakhri A. 2015. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Saf Environ Protect. 93:1–8. doi:10.1016/j.psep.2014.06.003.
  • Fiaz R, Hafeez M, Mahmood R. 2019. Ficcus palmata leaves as a low-cost biosorbent for methylene blue: thermodynamic and kinetic studies . Water Environ Res. 91(8):689–699. doi:10.1002/wer.1093.
  • Freundlich H. 1907. Uber die Adsorption in Losungen. Zeitschr Für Physika Chemie. 57:385–470.
  • Geetha P, Latha MS, Mathew K. 2015. Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study. J Mol Liq. 212:723–730. doi:10.1016/j.molliq.2015.10.035.
  • Ghaedi M, Hajati S, Barazesh B, Karimi F, Ghezelbash G. 2013. Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. J Ind Eng Chem. 19(1):227–233. doi:10.1016/j.jiec.2012.08.006.
  • Gheju M, Balcu I. 2011. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J Hazard Mater. 196:131–138. doi:10.1016/j.jhazmat.2011.09.002.
  • Gunasekar V, Ponnusami V. 2013. Kinetics, equilibrium, and thermodynamic studies on adsorption of methylene blue by carbonized plant leaf powder. J Chem. 2013:1–6. doi:10.1155/2013/415280.
  • Gunay A, Arslankaya E, Tosun I. 2007. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater. 146(1–2):362–371. doi:10.1016/j.jhazmat.2006.12.034.
  • Hannachi Y, Hafidh A. 2020. Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium. Int J Environ Sci Technol. 17:3875–3890. doi:10.1007/s13762-020-02742-9.
  • Hassan W, Farooq U, Ahmad M, Athar M, Khan MA. 2017. Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem. 10:S1512–S1522. doi:10.1016/j.arabjc.2013.05.002.
  • Ho YS, McKay G. 1999. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J Environ Sci Health C. 34(5):1179–1204. doi:10.1080/10934529909376889.
  • Jawad AH, Abdul Hameed AS, Mastuli MS. 2020. Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci. 14(1):305–313. doi:10.1080/16583655.2020.1736767.
  • Kamga FT. 2019. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl Water Sci. 9:1.
  • Kankılıç GB, Metin AÜ. 2020. Phragmites australis as a new cellulose source: extraction, characterization and adsorption of methylene blue. J Mol Liq. 12:113313.
  • Kocaman S. 2020. Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids. Int J Phytoremediation. 22(5):551–566. doi:10.1080/15226514.2020.1741509.
  • Kumar D, Gaur JP. 2011. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresour Technol. 102(3):2529–2535. doi:10.1016/j.biortech.2010.11.061.
  • Kumar KK, Prasad MK, Sarada B, Sarma GVS, Murthy CV. 2010. Optimization of Ni (II) removal on Rhizomucor tauricus by using Box-Behnken design. Asian J Chem. 22(7):5773–5775.
  • Kumar M, Tamilarasan R. 2013. Modeling studies for the removal of methylene blue from aqueous solution using Acacia fumosa seed shell activated carbon. J Environ Chem Eng. 1(4):1108–1116. doi:10.1016/j.jece.2013.08.027.
  • Kumar PS, Abhinaya RV, Lashmi KG, Arthi V, Pavithra R, Sathyaselvabala V, Kirupha SD, Sivanesan S. 2011. Adsorption of methylene blue dye from aqueous solution by agricultural waste: equilibrium, thermodynamics, kinetics, mechanism and process design. Colloid J. 73(5):651–661. doi:10.1134/S1061933X11050061.
  • Kumar S, Balasubramanian P, Swaminathan G. 2013. Degradation potential of free and immobilized cells of white rot fungus Phanerochaete chrysosporium on synthetic dyes. Int J ChemTech Res. 5:565–571.
  • Lagrergen S. 1898. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar. 24(4):1–39.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Liu Z, Zhang F, Liu T, Peng N, Gai C. 2016. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: adsorption equilibrium and kinetics. J Environ Manage. 182:446–454. doi:10.1016/j.jenvman.2016.08.008.
  • Luo XP, Fu SY, Du YM, Guo JZ, Li B. 2017. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous Mesoporous Mater. 237:268–274. doi:10.1016/j.micromeso.2016.09.032.
  • Magan N, Fragoeiro S, Bastos C. 2010. Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology. 38(4):238–248. doi:10.4489/MYCO.2010.38.4.238.
  • Mahalakshmi M, Saranaathan SE. 2019. Film-pore diffusion modeling for the adsorption of aqueous dye solution onto acid-treated sugarcane bagasse. DWT. 168:324–339. doi:10.5004/dwt.2019.24645.
  • Maran JP, Manikandan S, Mekala V. 2013. Modeling and optimization of betalain extraction from Opuntiaficus-indica using Box–Behnken design with desirability function. Ind Crop Prod. 49:304–311. doi:10.1016/j.indcrop.2013.05.012.
  • Meili L, da Silva TS, Henrique DC, Soletti JI, de Carvalho SH, Fonseca EJ, de Almeida AR, Dotto GL. 2017. Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions. Water Sci Technol. 75(1–2):106–114. doi:10.2166/wst.2016.495.
  • Miranda MA, Dhandapani P, Kalavathy MH, Miranda LR. 2010. Chemically activated Ipomoea carnea as an adsorbent for the copper sorption from synthetic solutions. Adsorption. 16(1–2):75–84. doi:10.1007/s10450-010-9209-2.
  • Njanja E, Mbokou SF, Pontie M, Nacef M, Tonle IK. 2019. Comparative assessment of methylene blue biosorption using coffee husks and corn cobs: towards the elaboration of a lignocellulosic-based amperometric sensor. SN App Sci. 1(6):513.
  • Ofomaja AE. 2008. Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chem Eng J. 143(1–3):85–95. doi:10.1016/j.cej.2007.12.019.
  • Oguntimein GB. 2015. Biosorption of dye from textile wastewater effluent onto alkali treated dried sunflower seed hull and design of a batch adsorber. J Environ Chem Eng. 3(4):2647–2661. doi:10.1016/j.jece.2015.09.028.
  • Ozer TB, Erkaya IA, Udoh AU, Duygu DY, Akbulut A, Bayramoglu G, Arica MY. 2011. Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res Int. 19(7):2983–2993. doi:10.1007/s11356-012-0809-0.
  • Pandian P, Arivoli S, Marimuthu V, Regis AP. 2013. Kinetic, thermodynamic and isotherm studies on the removal of methylene blue dye using acid activated Ipomoea carnea. Int J Revolution in Sci Humanity. 2(1):19–29.
  • Parlayıcı Ş, Pehlivan E. 2020. Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. Int J Phytoremediation. 23:1–5.
  • Paszczynski A, Crawford RL. 2000. Recent advances in the use of fungi in environmental remediation and biotechnology. Soil Biochem. 24(10):379–422.
  • Prakash Maran V, Sivakumar V, Sridhar R, Thirugnanasambandham K. 2013. Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym. 92(2):1335–1347. doi:10.1016/j.carbpol.2012.09.069.
  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A. 2010. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater. 177(1–3):70–80. doi:10.1016/j.jhazmat.2009.12.047.
  • Rangabhashiyam S, Balasubramanian P. 2018a. Adsorption behaviors of hazardous methylene blue and hexavalent chromium on novel materials derived from Pterospermum acerifolium shells. J Mol Liq. 254:433–445. doi:10.1016/j.molliq.2018.01.131.
  • Rangabhashiyam S, Balasubramanian P. 2018b. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution. Int J Phytoremediation. 20(6):624–633. doi:10.1080/15226514.2017.1413329.
  • Rangabhashiyam S, Giri Nandagopal MS, Nakkeeran E, Keerthi R, Selvaraju N. 2016. Use of Box–Behnken design of experiments for the adsorption of chromium using immobilized macroalgae. Desalination and Water Treat. 57(54):26101–26113. doi:10.1080/19443994.2016.1163514.
  • Rangabhashiyam S, Lata S, Balasubramanian P. 2018. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces. 10:197–215. doi:10.1016/j.surfin.2017.09.011.
  • Religa P, Kowalik-Klimczak A, Gierycz P. 2013. Study on the behavior of nanofiltration membranes using for chromium (III) recovery from salt mixture solution. Desalination. 315:115–123. doi:10.1016/j.desal.2012.10.036.
  • Runping H, Yuanfeng W, Pan H, Jie S, Jian Y, Yongsen L. 2006. Removal of methylene blue from aqueous solution by chaff in batch mode. J Hazard Mater. 137:550–557.
  • Saikia P, Gupta UN, Barman RS, Kataki R, Chutia RS, Baruah BP. 2015. Production and characterization of bio-oil produced from Ipomoea carnea bio-weed. Bioenerg Res. 8(3):1212–1223. doi:10.1007/s12155-014-9561-2.
  • Singh H, Chauhan G, Jain AK, Sharma SK. 2017. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. J Environ Chem Eng. 5(1):122–135. doi:10.1016/j.jece.2016.11.030.
  • Song J, Zou W, Bian Y, Su F, Han R. 2011. Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination. 265(1–3):119–125. doi:10.1016/j.desal.2010.07.041.
  • Srinivasan A, Viraraghavan T. 2010. Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage. 91(10):1915–1929. doi:10.1016/j.jenvman.2010.05.003.
  • Sugumaran KR, Shobana P, Balaji PM, Ponnusami V, Gowdhaman D. 2014. Statistical optimization of pullulan production from Asian palm kernel and evaluation of its properties. Int J Biol Macromol. 66:229–235. doi:10.1016/j.ijbiomac.2014.02.045.
  • Sunxiang Z, Tongshui Z. 2016. Biosorption of methylene blue from wastewater by an extraction residue of Salvia miltiorrhiza Bge. Bioresour Technol. 219:330–337.
  • Tang Y, Zeng Y, Hu T, Zhou Q, Peng Y. 2016. Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. J Environ Chem Eng. 4(3):2900–2910. doi:10.1016/j.jece.2016.05.040.
  • Temkin MI, Pyzhev V. 1940. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR. 12:327–356.
  • Thirugnanasambandham K, Sivakumar V, Maran JP. 2015. Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method. J Taiwan Inst Chem Eng. 46:160–167. doi:10.1016/j.jtice.2014.09.021.
  • Tripathi P, Srivastava VC, Kumar A. 2009. Optimization of an azo dye batch adsorption parameters using Box–Behnken design. Desalination. 249(3):1273–1279. doi:10.1016/j.desal.2009.03.010.
  • Vijayaraghavan K, Ashokkumar T. 2017. Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng. 5(5):4866–4883. doi:10.1016/j.jece.2017.09.026.
  • Vimonses V, Jin B, Chow CW. 2010. Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime. J Hazard Mater. 177(1–3):420–427. doi:10.1016/j.jhazmat.2009.12.049.
  • Wahab MA, Jellali S, Jedidi N. 2010. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol. 101(14):5070–5075. doi:10.1016/j.biortech.2010.01.121.
  • Weber WJ, Morris JC. 1962. Advances in water pollution research: removal of biologically resistant pollutants from waste waters by adsorption. In: Proceedings of the International Conference on Water Pollution Symposium. Vol. 2. Oxford: Pergamon Press. p. 231–266.
  • West W, Nightingale P. 2009. Organizing for innovation: towards successful translational research. Trends Biotechnol. 27(10):558–561. doi:10.1016/j.tibtech.2009.06.007.
  • Zheng T, Yu H, Liu S, Jiang J, Wang K. 2020. Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renew Energy. 145:858–866. doi:10.1016/j.renene.2019.06.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.