304
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In-situ remediation of petroleum-contaminated soil by application of plant-based surfactants toward preventing environmental degradation

ORCID Icon, , , , &

References

  • Al-Thani RF, Yasseen BT. 2020. Phytoremediation of polluted soils and waters by native Qatari plants: future perspectives. Environ Pollut. 259:113694. doi:10.1016/j.envpol.2019.113694.
  • Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R. 2017. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J Environ Manage. 200:253–262. doi:10.1016/j.jenvman.2017.05.090.
  • ASTM D5765-16. 2016. Standard practice for solvent extraction of total petroleum hydrocarbons from soils and sediments using closed vessel microwave heating. West Conshohocken (PA): ASTM International.
  • Banks MK, Schwab P, Liu B, Kulakow PA, Smith JS, Kim R. 2003. The effect of plants on the degradation and toxicity of petroleum contaminants in soil. In: Sceper T., editors. A field assessment advances in biochemical engineering/biotechnology. Vol. 78. Berlin: Springer-Verlag. p. 75–96.
  • Del Buono D, Terzano R, Panfili I, Bartucca ML. 2020. Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review. Int J Phytoremediation. 22:789–803. 10.1080/15226514.2019.1710817.
  • European Environment Agency. 2011. (EEA) Overview of contaminants affecting soil and groundwater in europe. [accessed 2019 Nov]. http://www.eea.europa.eu/data-and-maps/figures/overview-of-contaminants-affecting-soil-and-groundwater-in-europe.
  • Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. 2019. Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms. 7(11):581. doi:10.3390/microorganisms7110581.
  • Hazaimeh M, Almansoory AF, Mutalib SA, Kanaan B. 2019. Effects of plant density on the bioremediation of soils contaminated with polyaromatic hydrocarbons. Emerg Contam. 5:123–127. doi:10.1016/j.emcon.2019.03.001.
  • Igwilo KC, Okoro EE, Agwu O, Onedibe C, Ibeneme SI, Okoli NO. 2019. Experimental analysis of Persea americana as filtration loss control additive for non-aqueous drilling fluid. JERA. 44:8–21. doi:10.4028/www.scientific.net/JERA.44.8.
  • Jan S, Rashid B, Azooz MM, Hossain MA, Ahmad P. 2016. Chapter 17 - Genetic strategies for advancing phytoremediation potential in plants: a recent update. In: Ahmad P, editor. Plant Metal Interaction: Emerging Remediation techniques. Amsterdam: Elsevier Inc. p. 431–454. doi:10.1016/B978-0-12-803158-2.00017-5.
  • Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D. 2019. Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov. 13:264–276. doi:10.1016/j.eti.2018.12.007.
  • Karakas FP, Şöhretoğlu D, Liptaj T, Štujber M, Turker AU, Marák J, Çalış I, Yalçın FN. 2014. Isolation of an oleanane-type saponin active from Bellis perennis through antitumor bioassay-guided procedures. Pharm Biol. 52(8):951–955. doi:10.3109/13880209.2013.874461.
  • Kerfeld CA, Krogmann DW. 1998. Photosynthetic cytochromes Ωin cyanobacteria, algae and plants. Annu Rev Plant Physiol Plant Mol Biol. 49(1):397–425. doi:10.1146/annurev.arplant.49.1.397.
  • Kregiel D, Berlowska J, Witonska I, Antolak H, Proestos C, Babic M, Babic L, Zhang B. 2017. Saponin-based, biological-active surfactants from plants. In: Application and characterization of surfactant. Chapter 6. Reza Najjar: IntechOpen. doi:10.5772/68062.
  • Leong YK, Chang J-S. 2020. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 303:122886. doi:10.1016/j.biortech.2020.122886.
  • Liao C, Xu W, Lu G, Deng F, Liang X, Guo C, Dang Z. 2016. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecol Eng. 92:10–17. doi:10.1016/j.ecoleng.2016.03.041.
  • Mani D, Kumar C, Patel NK. 2015. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol Environ Saf. 111:86–95. doi:10.1016/j.ecoenv.2014.09.019.
  • Mansfield TA. 1978. Phytohormones and related compounds – a comprehensive treatise, vol. II. Phytohormones and the development of higher plants. Amsterdam, New York and Oxford: Elsevier/North-Holland Biomedical Press. doi:10.1016/0968-0004(79)90131-2.
  • Odoh CK, Zabbey N, Sam K, Eze CN. 2019. Status, progress and challenges of phytoremediation - An African scenario. J Environ Manage. 237:365–378. doi:10.1016/j.jenvman.2019.02.090.
  • Okoro EE, Nnaji CG, Sanni SE, Ahuekwe EF, Igwilo KC. 2020. Evaluation of a naturally derived waste brown oil extract for demulsification of crude oil emulsion. Energy Explor Exploit. 38(4):1–18. doi:10.1177/0144598720905080.
  • Peng S, Zhou Q, Cai Z, Zhang Z. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J Hazard Mater. 168(2–3):1490–1496. doi:10.1016/j.jhazmat.2009.03.036.
  • Prabakaran K, Li J, Anandkumar A, Leng Z, Zou CB, Du D. 2019. Managing environmental contamination through phytoremediation by invasive plants: a review. Ecol Eng. 138:28–37. doi:10.1016/j.ecoleng.2019.07.002.
  • Shah V, Daverey A. 2020. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov. 18:100774. doi:10.1016/j.eti.2020.100774.
  • Sheoran V, Sheoran AS, Poonia P. 2010. Role of hyper accumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol. 41(2):168–214. doi:10.1080/10643380902718418.
  • Taheri M, Motesharezadeh B, Zolfaghari AA, Javadzarrin I. 2018. Phytoremediation modeling in soil contaminated by oil-hydrocarbon under salinity stress by eucalyptus (A comparative study). Comput Electron Agric. 150:162–169. doi:10.1016/j.compag.2018.04.016.
  • US EPA Method 1664. 2007. Oil and grease analysis in wastewater, United States Environmental Protection Agency, SW-846 Manual. Washington (DC): U.S. Government Printing Office. http://www.epa.gov/waterscience/methods/method/oil/.
  • US EPA Method 3550c. 2007. Ultrasonic extraction, United States Environmental Protection Agency, SW-846 Manual. Washington, DC: U.S. Government Printing Office. Available from: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3550c.pdf.
  • Zehra A, Sahito ZA, Tong W, Tang L, Hamid Y, Khan MB, Ali Z, Naqvi B, Yang X. 2020. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption. J Environ Sci. 87:24–38. doi:10.1016/j.jes.2019.05.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.