548
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging

, , ORCID Icon, &

References

  • Abideen Z, Koyro HW, Huchzermeyer B, Ahmed MZ, Gul B, Khan MA. 2014. Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environ Exp Bot. 105:70–76. doi:10.1016/j.envexpbot.2014.04.009.
  • Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126.
  • Agarwal PK, Shukla PS, Gupta K, Jha B. 2013. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol. 54(1):102–123. doi:10.1007/s12033-012-9538-3.
  • Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. 2017. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants. 9(2):plx009. doi:10.1093/aobpla/plx009.
  • Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by over-expression of a vacuolar Na+/H + antiport in Arabidopsis. Science. 285(5431):1256–1258. doi:10.1126/science.285.5431.1256.
  • Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 50(1):601–639. doi:10.1146/annurev.arplant.50.1.601.
  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell. 24(3):1127–1142. doi:10.1105/tpc.111.095273.
  • Bassil E, Coku A, Blumwald E. 2012. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H + antiporters in plant growth and development. J Exp Bot. 63(16):5727–5740. doi:10.1093/jxb/ers250.
  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E. 2011. The Arabidopsis Na+/H + antiporters NHX1 and NHX2 control vacuolar pH and K + homeostasis to regulate growth, flower development, and reproduction. Plant Cell. 23(9):3482–3497. doi:10.1105/tpc.111.089581.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Blasco B, Navarro-León E, Ruiz JM. 2018. Oxidative stress in relation with micronutrient deficiency or toxicity. In: Hussain MA, Kamiya T, Burritt DJ, Tran LP, Fujiwara T, editors. Plant micronutrient use efficiency. United Kingdom: Academic Press. p. 181–194.
  • Blumwald E, Aharon GS, Apse MP. 2000. Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1465(1–2):140–151. doi:10.1016/S0005-2736(00)00135-8.
  • Carrasco-Ríos L, Pinto M. 2014. Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn,’Lluteno’and’Jubilee. Chilean J Agric Res. 74(1):89–95. doi:10.4067/S0718-58392014000100014.
  • Chaparzadeh N, D'Amico ML, Khavari-Nejad R-A, Izzo R, Navari-Izzo F. 2004. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem. 42(9):695–701. doi:10.1016/j.plaphy.2004.07.001.
  • Chawla S, Jain S, Jain V. 2013. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol. 22(1):27–34. doi:10.1007/s13562-012-0107-4.
  • Cramer GR. 2002. Sodium-calcium interactions under salinity stress. In: Läuchli A, Lüttge U, editors. Salinity: Environment - Plants - Molecules. Netherlands: Kluwer Academic Publishers. p. 205–227.
  • Diray-Arce J, Clement M, Gul B, Khan MA, Nielsen BL. 2015. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genomics. 16(1):353. doi:10.1186/s12864-015-1553-x.
  • Essah PA, Davenport R, Tester M. 2003. Sodium influx and accumulation in Arabidopsis. Plant Physiol. 133(1):307–318. doi:10.1104/pp.103.022178.
  • Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol. 179(4):945–963. doi:10.1111/j.1469-8137.2008.02531.x.
  • Flowers TJ. 1988. Chloride as a nutrient and as an osmoticum. In: Tinker B, Lauchii A, editors, Advances in plant nutrition. Vol.3. New York (USA): Praeger. p. 55–78.
  • Foyer CH, Harbinson J. 1993. Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis. In: Frank HA, Cogdell RJ, Young AJ, Britton G, editors. Carotenoids in Photosynthesis. Dordrecht: Kluwer. p. 305–325.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. 2014:1–18. doi:10.1155/2014/701596.
  • Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA. 2015. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants. doi:10.1093/aobpla/plv004.
  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 51(1):463–499. doi:10.1146/annurev.arplant.51.1.463.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Heidari M, Jamshidi P. 2011. Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agri SciChina. 10(2):228–237. doi:10.1016/S1671-2927(09)60309-6.
  • Hernández JA, Almansa MS. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 115(2):251–257. doi:10.1034/j.1399-3054.2002.1150211.x.
  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot. 61(2):521–535. doi:10.1093/jxb/erp321.
  • Husain S, von Caemmerer S, Munns R. 2004. Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol. 31(11):1115–1126. doi:10.1071/FP04078.
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R. 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant. 31(3):427–436. doi:10.1007/s11738-009-0275-6.
  • Jarvis DE, Ryu CH, Beilstein MA, Schumaker KS. 2014. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula. Mol Biol Evol. 31(8):2094–2107. doi:10.1093/molbev/msu152.
  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. 2006. Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet. 85(3):237–254. doi:10.1007/BF02935340.
  • Johnson SM, Doherty SJ, Croy RRD. 2003. Biphasic superoxide generation in potato tubers. A self-amplifying response to stress. Plant Physiol. 131(3):1440–1449. doi:10.1104/pp.013300.
  • Kader MA, Seidel T, Golldack D, Lindberg S. 2006. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot. 57(15):4257–4268. doi:10.1093/jxb/erl199.
  • Kamel M, Hammad S. 2015. Is the soil K/Na ratio the first defense line against salinity? Eur J Biol Res. 5(3):42–51.
  • Kholova J, Sairam RK, Meena RC. 2010. Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant. 32(3):477–486. doi:10.1007/s11738-009-0424-y.
  • Koksal N, Alkan-Torun A, Kulahlioglu I, Ertargin E, Karalar E. 2016. Ion uptake of marigold under saline growth conditions. Springerplus. 5(1):139. doi:10.1186/s40064-016-1815-3.
  • Kumar A, Kumar A, Lata C, Kumar S, Mangalassery S, Singh JP, Mishra AK, Dayal D. 2018. Effect of salinity and alkalinity on response of halophytic grasses Sporobolus marginatus and Urochondra setulosa. Ind J Agri Sci. 88:1296–1304.
  • Kumar A, Kumar A, Lata C, Kumar S. 2016. Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. South Afr J Bot. 105:36–44. doi:10.1016/j.sajb.2015.12.006.
  • Kumar A, Mann A, Kumar A, Devi S. Sharma PC. 2018. Potential and role of halophyte crops in saline environments. In: Gupta SK, Goyal MR, Singh A, editors. Engineering practices for management of soil salinity. Oakville: Apple Academic Press Inc. p. 329.
  • Kumar A, Mann A, Lata C, Kumar N, Sharma PC. 2019. Salinity-induced Physiological and Molecular Responses of Halophytes. In: Dagar JC, Yadav RK, Sharma PC, editors. Research Developments in Saline Agriculture. Singapore: Springer; p. 331–356.
  • Kumari A, Das P, Parida AK, Agarwal PK. 2015. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci. 6:537. doi:10.3389/fpls.2015.00537.
  • Kumari N, Jain V, Talwar G. 2013. Salinity induced changes in ascorbic acid, hydrogen peroxide, lipid peroxidation and glutathione content in leaves of salt tolerant and salt-susceptible cultivars of cotton (Gossypium Hirsutum L.). Res Plant Biol. 3(2):6–11.
  • Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408. doi:10.1006/meth.2001.1262.
  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science. 319(5863):607–610. doi:10.1126/science.1152339.
  • Loreto F, Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127(4):1781–1787.
  • Lutts S, Kinet JM, Bouharmont J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot. 46(12):1843–1852. doi:10.1093/jxb/46.12.1843.
  • Maggio A, Dalton FN, Piccinni G. 2002. The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance. Eur J Agron. 16(3):197–206. doi:10.1016/S1161-0301(01)00128-9.
  • Manchanda G, Garg N. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol Plant. 30(5):595–618. doi:10.1007/s11738-008-0173-3.
  • Mandhania S, Madan S, Sawhney V. 2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plant. 50(2):227–231. doi:10.1007/s10535-006-0011-7.
  • Mangalassery S, Dayal D, Kumar Arvind Bhatt K, Nakar R, Kumar Ashwani Singh JP, Misra AK. 2017. Pattern of salt accumulation and its impact on salinity tolerance in two halophyte grasses in extreme saline desert in India. Ind J Expt Biol. 55:542–548.
  • Mann A, Bishi SK, Mahatma MK, Kumar A. 2015. Metabolomics and salt stress tolerance in plants. In: Wani SH, Hossain MA, editor. Managing salt tolerance in plants: molecular and genomic perspectives. Boca Raton: CRC Press. p. 251–266.
  • Mann A, Kumar A, Saha M, Lata C, Kumar A. 2019. Stress induced changes in osmoprotectants, ionic relations, antioxidants activities and protein profiling characterize Sporobolus marginatus Hochst. ex A. Rich. salt tolerance mechanism. Ind J Expt Biol. 57:672–679.
  • Mann A, Kumar N, Lata C, Kumar A, Kumar A, Meena BL. 2019. Functional annotation of differentially expressed genes under salt stress in Dichanthium annulatum. Plant Physiol Rep. 24(1):104–111. doi:10.1007/s40502-019-0434-8.
  • Mansour MMF, Salama KH. 2004. Cellular basis of salinity tolerance in plants. Environ Exp Bot. 52(2):113–122. doi:10.1016/j.envexpbot.2004.01.009.
  • Mansour MMF, Salama KHA, Ali FZM, Hadid AF. 2005. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol. 31(1–2):29–41.
  • Meena BL, Kumar P, Kumar A, Meena RL, Kaledhonkar MJ, Sharma PC. 2018. Zinc and iron nutrition to increase the productivity of pearl millet-mustard cropping system in salt affected soils. Int J Curr Microbiol App Sci. 7(8):3201–3211. doi:10.20546/ijcmas.2018.708.343.
  • Muhammed S, Akbar M, Neue HU. 1987. Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.). Plant Soil. 104(1):57–62. doi:10.1007/BF02370625.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5):867–880.
  • Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR. 2002. Antioxidant capacities of green and cyanic leaves in the sun species, Quintinia serrata. Funct Plant Biol. 29(12):1437–1443. doi:10.1071/FP02100.
  • Ozgur R, Uzilday B, Sekmen AH, Turkan I. 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol. 40(9):832–847. doi:10.1071/FP12389.
  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK. 2016. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci. 7:351. doi:10.3389/fpls.2016.00351.
  • Pooja Nandwal AS, Chand M, Pal A, Kumari A, Rani B, Goel V, Kulshreshtha N. 2020. Soil moisture deficit induced changes in antioxidative defense mechanism of sugarcane (Saccharum officinarum) varieties differing in maturity. Ind. J Agric Sci. 90(3):507–512.
  • Rangani J, Parida AK, Panda A, Kumari A. 2016. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Front Plant Sci. 7(50):1–18.
  • Rani B, Kumari N, Jain V, Dhawan K, Avtar R, Kumar A, Sheoran P. 2016. Antioxidative system as influenced by high temperature stress in Brassica juncea (L) Czern & Coss. Curr Trends Biotechnol Pharm. 10(2):118–125.
  • Rao MV, Watkins CB, Brown SK, Weeden NF. 1998. Active oxygen species metabolism in'White Angel'x'Rome Beauty'apple selections resistant and susceptible to superficial scald. JASHS. 123(2):299–304. doi:10.21273/JASHS.123.2.299.
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35(4):1039–1050. doi:10.1007/s11738-012-1142-4.
  • Reyes RY, Panaullah GM, Neue HU. 1983. A study of some characteristics of five coastal saline soils in relation to their suitability for rice production. IRRI Saturday seminar report, October 29, 1983. Los Baños, Philippines.
  • Shabala L, Cuin TA, Newman IA, Shabala S. 2005. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta. 222(6):1041–1050. doi:10.1007/s00425-005-0074-2.
  • Shabala S, Bose J, Hedrich R. 2014. Salt bladders: do they matter? Trends Plant Sci. 19(11):687–691. doi:10.1016/j.tplants.2014.09.001.
  • Shabala S, Pottosin I. 2014. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant. 151(3):257–279. doi:10.1111/ppl.12165.
  • Sharma DK, Singh A. 2015. Salinity research in India-achievements, challenges and future prospects. Water Energy Internat. 58:35–45.
  • Sharma V, Kumar N, Verma A, Gupta VK. 2013. Exogenous application of Brassinosteroids ameliorates salt-induced stress in mung bean seedlings. Int J Life Sci. 2(1):7–13. doi:10.5958/j.2319-1198.2.1.002.
  • Singh A, Kumar A, Datta A, Yadav RK. 2018. Evaluation of guava (Psidium guajava) and bael (Aegle marmelos) under shallow saline watertable conditions. Indian J Agric Sci. 88(5):720–725.
  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z. 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol. 54(1):39–50. doi:10.18388/abp.2007_3267.
  • Stumm W, Morgan JJ. 1970. Aquatic chemistry. New York: Wiley Interscience. p. 583.
  • Subbarao GV, Johansen C, Jana MK, Kumar Rao JVDK. 1990. Effects of the sodium/calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan). J Plant Physiol. 136(4):439–443. doi:10.1016/S0176-1617(11)80032-5.
  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. 2011. Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J Exp Bot. 62(6):2189–2203. doi:10.1093/jxb/erq422.
  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernandez-Ocana ANA, Rio LA, Barroso JB. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 29(7):1449–1459. doi:10.1111/j.1365-3040.2006.01530.x.
  • Xu K, Hong P, Luo L, Xia T. 2009. Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thalina, in Petunia hybrida enhances salt and drought tolerance. J Plant Biol. 52(5):453–461. doi:10.1007/s12374-009-9058-2.
  • Xu L, Han L, Huang B. 2011. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. J Amer Soc Hort Sci. 136(4):247–255. doi:10.21273/JASHS.136.4.247.
  • Yamaguchi T, Hamamoto S, Uozumi N. 2013. Sodium transport system in plant cells. Front Plant Sci. 4:410. doi:10.3389/fpls.2013.00410.
  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M. 2014. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Ecotoxicol Environ Saf. 110:21–30. doi:10.1016/j.ecoenv.2014.08.013.
  • Zhang F, Wang Y, Yang Y, Wu HAO, Wang DI, Liu J. 2007. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ. 30(7):775–785. doi:10.1111/j.1365-3040.2007.01667.x.
  • Zhang HX, Hodson JN, Williams JP, Blumwald E. 2001. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA. 98(22):12832–12836. doi:10.1073/pnas.231476498.
  • Zhang Y, Fang J, Wu X, Dong L. 2018. Na+/K + balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol. 18(1):375 doi:10.1186/s12870-018-1586-9.
  • Zörb C, Senbayram M, Peiter E. 2014. Potassium in agriculture–status and perspectives. J Plant Physiol. 171(9):656–669. doi:10.1016/j.jplph.2013.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.