366
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Cadmium uptake and transfer by Sedum plumbizincicola using EDTA, tea saponin, and citric acid as activators

, , &

References

  • Bao SD. 2000. Analysis of soil and agrochemicals. 3rd ed. Beijing: China Agriculture Press.
  • Bashir S, Zhu J, Fu QL, Hu HQ. 2018. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea Aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere. 194:579–587. doi:10.1016/j.chemosphere.2017.11.162.
  • Bassi R, Prasher SO, Simpson BK. 2000. Extraction of metals from a contaminated sandy soil using citric acid. Environ Prog. 19(4):275–282. doi:10.1002/ep.670190415.
  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem. 37(2):241–250. doi:10.1016/j.soilbio.2004.07.033.
  • Bian R, Li L, Shi W, Ma B, Joseph S, Li LQ, Liu XY, Zheng JF, Zhang XH, Cheng K, et al. 2018. Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use. Biomass Bioenergy. 118:32–39. doi:10.1016/j.biombioe.2018.08.003.
  • Cao MH, Hu Y, Sun Q, Wang LL, Chen J, Lu XH. 2013. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Environ Pollut. 174(2013):93–99. doi:10.1016/j.envpol.2012.11.015.
  • Cao Y, Zhang S, Zhong Q, Wang G, Xu X, Li T, Wang LL, Jia YX, Li Y. 2018. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf. 162:464–473. doi:10.1016/j.ecoenv.2018.07.036.
  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. 1997. Phytoremediation of soil metals. Curr Opin Biotechnol. 8(3):279–284. doi:10.1016/S0958-1669(97)80004-3.
  • Chen H, Zheng C, Tu C, Shen Z. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere. 41(1–2):229–234. doi:10.1016/S0045-6535(99)00415-4.
  • Choppala G, Saifullah Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci. 33(5):374–391. doi:10.1080/07352689.2014.903747.
  • Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88(11):1707–1719. doi:10.1016/j.biochi.2006.07.003.
  • David ES, Roger CP, Ingrid JP, IIya R. 1995. Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol. 109(4):1427–1433. doi:10.1104/pp.109.4.1427.
  • Di Palma L, Mecozzi R. 2007. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J Hazard Mater. 147(3):768–775. doi:10.1016/j.jhazmat.2007.01.072.
  • Fan YQ, Li Z, Zhou T, Zhou SB, Wu LH, Luo YM, Christie P. 2019. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Int J Phytorem. 22(7):713–724. doi:10.1080/15226514.2018.1556592.
  • Fan Z, Deng Z, Wang T, Yang W, Wang K. 2018. Synthesis of natural tea-saponin-based succinic acid sulfonate as anionic foaming agent. J Surfactants Deterg. 21(3):303–312. doi:10.1002/jsde.12027.
  • Feller U, Anders I, Wei S. 2019. Distribution and redistribution of 109Cd and 65Zn in the heavy metal hyperaccumulator Solanum nigrum L.: influence of cadmium and zinc concentrations in the root medium. Plants. 8(9):340. doi:10.3390/plants8090340.
  • Gao Y, He J, Ling W, Hu H, Liu F. 2003. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ Int. 29(5):613–618. doi:10.1016/S0160-4120(03)00048-5.
  • Garbisu C, Allica JH, Barrutia O, Alkorta I, Becerril JM. 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health. 17(3):173–188. doi:10.1515/reveh.2002.17.3.173.
  • Hamon RE, Lorenz SE, Holm PE, Christensen TH, McGrath SP. 1995. Changes in trace metal species and other components of the rhizosphere during growth of radish. Plant Cell Environ. 18(7):749–756. doi:10.1111/j.1365-3040.1995.tb00577.x.
  • Han C, Wu L, Tan W, Luo Y. 2013. Bioavailability and accumulation of cadmium and zinc by sedum plumbizincicola after liming of an agricultural soil subjected to acid mine drainage. Commun Soil Sci Plant Anal. 44(6):1097–1105. doi:10.1080/00103624.2012.750333.
  • Hong KJ, Tokunaga S, Kajiuchi T. 2002. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere. 49(4):379–387. doi:10.1016/s0045-6535(02)00321-1.
  • Hosseini SS, Lakzian A, Halajnia A, Hammami H. 2018. The effect of olive husk extract compared to the edta on Pb availability and some chemical and biological properties in a Pb-contaminated soil. Int J Phytoremediation. 20(7):643–649. doi:10.1080/15226514.2017.1365352.
  • Huang B, Guo ZH, Tu WJ, Peng C, Xiao X, Zeng P, Liu YN, Wang MW, Xiong J. 2018. Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in central south China. Environ Earth Sci. 77(3):68. doi:10.1007/s12665-018-7249-1.
  • Huang JW, Chen J, Berti WR, Cunningham SD. 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 31(3):800–805. doi:10.1021/es9604828.
  • Jiang D, Li Y, Wu Y, Zhou P, Lan Y, Zhou L. 2012. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite. Chemosphere. 89(7):832–837. doi:10.1016/j.chemosphere.2012.05.001.
  • Jiang J, Wu L, Li N, Luo Y, Liu L, Zhao Q, Zhang L, Christie P. 2010. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur J Soil Biol. 46(1):18–26. doi:10.1016/j.ejsobi.2009.10.001.
  • Koptsik GN. 2014. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sc. 47(9):923–939. doi:10.1134/S1064229314090075.
  • Lesage E, Meers E, Vervaeke P, Lamsal S, Hopgood M, Tack FMG, Verloo MG. 2005. Enhanced phytoextraction: II. Effect of edta and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Int J Phytoremediat. 7(2):143–152. doi:10.1080/16226510590950432.
  • Leung HM, Ye ZH, Wong MH. 2006. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut. 139(1):1–8. doi:10.1016/j.envpol.2005.05.009.
  • Li GD, Zhang ZW, Jing P, Zhou NN, Lin L, Yuan YF, Yu F. 2009a. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. Trans Chin Soc Agric Eng. 25(10):231–235. doi:10.3969/j.issn.1002-6819.2009.10.042.
  • Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJM, Tang YT, Yang XE, Shu WS. 2018. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol. 52(21):11980–11994. doi:10.1021/acs.est.8b01060.
  • Li LZ, Tu C, Wu LH, Peijnenburg WJGM, Ebbs S, Luo YM. 2017. Pathways of root uptake and membrane transport of Cd2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. Environ Toxicol Chem. 36(4):1038–1046. doi:10.1002/etc.3625.
  • Li N, Wu LH, Luo YM, Tang MD, Tan CY, Jiang YG, He XH, Teng CQ. 2009b. Effects of harvesting way of Sedum plumbizincicola on its zinc and cadmium uptake in a mixed heavy-metal-contaminated soil. Acta Pedolo Sin. 46:725–728.
  • Li ZA, Zou B, Xia HP, Ding YZ, Tan WN, Fu SL. 2008. Role of low-molecule-weight organic acids and their salts in regulating soil pH. Pedosphere. 18(2):137–148. doi:10.1016/S1002-0160(08)60001-6.
  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W. 2017. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 215(2):687–698. doi:10.1111/nph.14622.
  • Liu J, Zhu Y, Liu N, Wang CH, Wu S. 2015a. Effects of EDTA and critic acid (CA) on the translocation and accumulation of copper in Amaranthus Retroflexus L. System. Ecol Environ Sci. 24(8):1399–1405. doi:10.16258/j.cnki.1674-5906.2015.08.022.
  • Liu K, Li GD, Zhang ZW, Zhang SY, Shang R. 2008. Effects of EDTA and low molecular weight organic acids (LMWOA) on availability of cadmium in soil. J Agro-Environ Sci. 27(003):894–897. doi:10.3321/j.issn:1672-2043.2008.03.011.
  • Liu L, Wu LH, Li N, Luo YM, Li SL, Li Z, Han CL, Jiang YG, Christie P. 2011. Rhizosphere concentrations of zinc and cadmium in a metal contaminated soil after repeated phytoextraction by Sedum plumbizincicola. Int J Phytorem. 13(8):750–764. doi:10.1080/15226514.2010.525558.
  • Liu W, Wang Q, Wang B, Hou J, Luo Y, Tang C, Franks AE. 2015b. Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soils Sediments. 15(5):1191–1199. doi:10.1007/s11368-015-1067-9.
  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei JC, Wang H. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ. 191:124–132. doi:10.1016/j.agee.2014.04.010.
  • Luo C, Shen Z, Lou L, Li D. 2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut. 144(3):862–871. doi:10.1016/j.envpol.2006.02.012.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li RH, Zhang ZQ. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf. 126:111–121. doi:10.1016/j.ecoenv.2015.12.023.
  • Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut. 132(1):21–27. doi:10.1016/j.envpol.2004.04.001.
  • Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack FMG, Verloo MG. 2005. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytoremediation. 7(2):129–142. doi:10.1080/16226510590950423.
  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. 2013. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth Discuss. 5(2):2155–2179. doi:10.5194/sed-5-2155-2013.
  • Pollard AJ, Reeves RD, Baker AJM. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217–218:8–17. doi:10.1016/j.plantsci.2013.11.011.
  • Ran H, Guo Z, Shi L, Feng W, Xiao X, Peng C, Xue Q. 2019. Effects of mixed amendments on the phytoavailability of Cd in contaminated paddy soil under a rice-rape rotation system. Environ Sci Pollut Res. 26(14):14128–14136. doi:10.1007/s11356-019-04477-8.
  • Rossi G, Beni C. 2018. Effects of medium-term amendment with diversely processed sewage sludge on soil humification-mineralization processes and on Cu, Pb, Ni, and Zn bioavailability. Plants. 7(1):16. doi:10.3390/plants7010016.
  • Saleem MH, Ali S, Rehman M, Rizwan M, Kamran M, Mohamed IAA, Khan Z, Bamagoos AA, Alharby HF, Hakeem KR, et al. 2020. Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Environ Technol Inno. 19:100895. doi:10.1016/j.eti.2020.100895.
  • Shen Y, Zhao L, Meng H, Hou Y, Zhou H, Wang F, Cheng H, Liu H. 2016. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting. Waste Manag Res. 34(6):578–583. doi:10.1177/0734242x16640063.
  • Sui F, Zuo J, Chen D, Li L, Pan G, Crowley D. 2018. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environ Sci Pollut Res Int. 25(4):3368–3310. doi:10.1007/s11356-017-0652-4.
  • Sullivan TS, Mcbride MB, Thies JE. 2013. Rhizosphere microbial community and Zn uptake by willow (Salix purpurea, L.) depend on soil sulfur concentrations in metalliferous peat soils. Appl Soil Ecol. 67(5):53–60. doi:10.1016/j.apsoil.2013.02.003.
  • Tiller KG. 1989. Heavy metals in soils and their environmental significance. Adv Soil Sci. 9:113–142. doi:10.1007/978-1-4612-3532-3_2.
  • Turgut C, Katie Pepe M, Cutright TJ. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut. 131(1):147–154. doi:10.1016/j.envpol.2004.01.017.
  • Wang H, Zhong G. 2011. Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator commelina communis. Biol Trace Elem Res. 143(1):489–499. doi:10.1007/s12011-010-8850-7.
  • Wen J, Stacey SP, McLaughlin MJ, Kirby JK. 2009. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem. 41(10):2214–2221. doi:10.1016/j.soilbio.2009.08.006.
  • Wu H, Li C, Li Z, Liu R, Zhang A, Xiao ZH, Ma L, Li JL, Deng S. 2018. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Process Technol. 174:88–94. doi:10.1016/j.fuproc.2018.02.014.
  • Wu LH, Li Z, Akahane I, Liu L, Han C, Makino T, Luo YM, Christie P. 2012. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremediat. 14(10):1024–1038. doi:10.1080/15226514.2011.649436.
  • Wu LH, Luo YM, Christie P, Wong MH. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50(6):819–822. doi:10.1016/s0045-6535(02)00225-4.
  • Wu LH, Zhou SB, Bi D, Guo XH, Qin WH, Wang GJ, Luo YM. 2006. Sedum plumbizincicola, a new species of the crassulaceae from Zhejiang. China. Soils. 38:632–633.
  • Xu Q, Liu X, Zhao J, Wang D, Wang Q, Li X, Yang Q, Zeng G. 2018. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: role and significance of tea saponin. Bioresour Technol. 254:194–202. doi:10.1016/j.biortech.2018.01.084.
  • Yang ZQ, Yang T, Liu Y, Han SH. 2008. Mim capacitor modeling by support vector regression. J Electromagn Waves Appl. 22(1):61–67. doi:10.1163/156939308783122788.
  • Yuan XZ, Meng YT, Zeng GM, Fang YY, Shi JG. 2008. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloid Surf A-Physicochem Eng Asp. 317(1–3):256–261. doi:10.1016/j.colsurfa.2007.10.024.
  • Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ. 650:594–603. doi:10.1016/j.scitotenv.2018.09.055.
  • Zhang H, Zhang YL, Wang ZF, Ding MJ, Jiang YH, Xie ZL. 2016a. Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China. Sci Total Environ. 573:915–923. doi:10.1016/j.scitotenv.2016.08.128.
  • Zhang HB, Luo YM, Li Y, Zhou Q, Liu XH. 2014. Screening of criteria for heavy metals for revision of the national standard for soil environmental quality of China. Acta Pedolo Sin. 51(3):429–438. doi:10.11766/trxb201311010505.
  • Zhang YB, Liu AR, Zhang XP. 2016b. Effects of citric acid and EDTA on the absorption and translocation of Pb and nutrient elements in Coleus blumei. Prata Sci. 33(12):2442–2451. doi:10.11829/j.issn.1001-0629.2016-0203.
  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP. 2003. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 159(2):403–410. doi:10.1046/j.1469-8137.2003.00784.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.