787
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water

ORCID Icon, , , , &

Reference

  • Anderson DM, Cembella AD, Hallegraeff GM. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci. 4(1):143–176. doi:10.1146/annurev-marine-120308-081121.
  • Arslan M, Imran A, Khan QM, Afzal M. 2017. Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res Int. 24(5):4322–4336. doi:10.1007/s11356-015-4935-3.
  • Ayala-Parra P, Sierra-Alvarez R, Field JA. 2016. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage. J Hazard Mater. 317:335–343. doi:10.1016/j.jhazmat.2016.06.011.
  • Berner F, Heimann K, Sheehan M. 2015. Microalgal biofilms for biomass production. J Appl Phycol. 27(5):1793–1804. doi:10.1007/s10811-014-0489-x.
  • Cakmak I, van de Wetering DA, Marschner H, Bienfait HF. 1987. Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiol. 85(1):310–314. doi:10.1104/pp.85.1.310.
  • Chang SE, Stone J, Demes K, Piscitelli M. 2014. Consequences of oil spills: a review and framework for informing planning. E&S. 19(2):26. doi:10.5751/ES-06406-190226.
  • Das B, Deka S. 2019. A cost-effective and environmentally sustainable process for phycoremediation of oil field formation water for its safe disposal and reuse. Sci Rep. 9(1):15232. doi:10.1038/s41598-019-51806-5.
  • Das B, Mandal TK, Patra S. 2015. A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Appl Biochem Biotechnol. 176(5):1382–1401. doi:10.1007/s12010-015-1652-9.
  • David EO, Joel OF. 2013. Environmental remediation of oil spillage in Niger Delta region. SPE Nigeria Annual International Conference and Exhibition; 2013/8/5/, Lagos, Nigeria. doi:10.2118/167585-MS.
  • Decho AW, Gutierrez T. 2017. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol. 8:922–922. doi:10.3389/fmicb.2017.00922.
  • Devercelli M, O’Farrell I. 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica. 43(2):67–78. doi:10.1016/j.limno.2012.05.001.
  • El-Naggar NE-A, Hussein MH, Shaaban-Dessuuki SA, Dalal SR. 2020. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep. 10(1):3011. doi:10.1038/s41598-020-59945-w.
  • El-Sheekh MM, Hamouda RA, Nizam AA. 2013. Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int Biodeterior Biodegrad. 82:67–72. doi:10.1016/j.ibiod.2012.12.015.
  • Freedman B. 1995. 6. Oil pollution. In: Freedman B, editor. Environmental ecology. 2nd ed. San Diego: Academic Press; p. 159–188.
  • Habibi A, Babaei F. 2017. Biological treatment of real oilfield-produced water by bioaugmentation with sophorolipid-producing Candida catenulata. Environ Process. 4(4):891–906. doi:10.1007/s40710-017-0268-1.
  • Haida Z, Hakiman M. 2019. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci Nutr. 7(5):1555–1563. doi:10.1002/fsn3.1012.
  • Hernandez CA, Osma JF. 2020. Microbial electrochemical systems: deriving future trends from historical perspectives and characterization strategies [Systematic Review]. Front Environ Sci. 8:44. English.
  • Hodges A, Fica Z, Wanlass J, Vandarlin J, Sims R. 2017. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation. Chemosphere. 174:46–48. doi:10.1016/j.chemosphere.2017.01.107.
  • Khanzada ZT. 2020. Phosphorus removal from landfill leachate by microalgae. Biotechnol Rep. 25:e00419. doi:10.1016/j.btre.2020.e00419.
  • Kimambo ON, Gumbo JR, Chikoore H. 2019. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon. 5(3):e01312. doi:10.1016/j.heliyon.2019.e01312.
  • Kobayashi T, Kaminaga H, Navarro RR, Iimura Y. 2012. Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng. 47(8):1138–1145. doi:10.1080/10934529.2012.668106.
  • Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013:162750. doi:10.1155/2013/162750.
  • Łukawska-Matuszewska K, Graca B. 2018. Pore water alkalinity below the permanent halocline in the Gdańsk Deep (Baltic Sea) – concentration variability and benthic fluxes. Mar Chem. 204:49–61. doi:10.1016/j.marchem.2018.05.011.
  • Mandal S, Mallick N. 2014. Chapter 11. Microalgae: the tiny microbes with a big impact. In: Gupta VK, Tuohy MG, Kubicek CP, editors. Bioenergy research: advances and applications. Amsterdam: Elsevier; p. 171–184.
  • Mohamed ZA. 2018. Potentially harmful microalgae and algal blooms in the Red Sea: current knowledge and research needs. Mar Environ Res. 140:234–242. doi:10.1016/j.marenvres.2018.06.019.
  • Moorthy RK, Premalatha M, Arumugam M. 2017. Batch sedimentation studies for freshwater green alga Scenedesmus abundans using combination of flocculants. Front Chem. 5:37–37. doi:10.3389/fchem.2017.00037.
  • Ogwuru N, Adamczeski M. 2000. Bioactive natural products derived from polygonum species of plants: their structures and mechanisms of action. In: Atta ur R, editor. Studies in natural products chemistry. San Diego: Elsevier; p. 607–642.
  • Pal A, Paul AK. 2013. Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201. J Polym. 2013:1–7. doi:10.1155/2013/692374.
  • Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: an overview. J Nutr Sci. 5:e47. doi:10.1017/jns.2016.41.
  • Patias LD, Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. 2017. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res Int. 100(Pt 1):260–266. doi:10.1016/j.foodres.2017.06.069.
  • Pham T-L, Bui MH. 2020. Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: formation of bioflocculation and enhancement of removal efficiency. J Chem. 2020:1–9. doi:10.1155/2020/8094272.
  • Pikoli MR, Sari AF, Solihat NA, Permana AH. 2019. Characteristics of tropical freshwater microalgae Micractinium conductrix, Monoraphidium sp. and Choricystis parasitica, and their potency as biodiesel feedstock. Heliyon. 5(12):e02922eng. doi:10.1016/j.heliyon.2019.e02922.
  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N. 2010. The impacts of environmental pollutants on microalgae and cyanobacteria. Crit Rev Environ Sci Technol. 40(8):699–821. doi:10.1080/10643380802471068.
  • Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2(4):152–159. doi:10.1016/S1360-1385(97)01018-2.
  • Schweitzer C, Schmidt R. 2003. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 103(5):1685–1757. doi:10.1021/cr010371d.
  • Shanab SMM, Mostafa SSM, Shalaby EA, Mahmoud GI. 2012. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed. 2(8):608–615. doi:10.1016/S2221-1691(12)60106-3.
  • Shi T-Q, Wang L-R, Zhang Z-X, Sun X-M, Huang H. 2020. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioeng Biotechnol. 8:610. doi:10.3389/fbioe.2020.00610.
  • Stauffer BA, Bowers HA, Buckley E, Davis TW, Johengen TH, Kudela R, McManus MA, Purcell H, Smith GJ, Vander Woude A, et al. 2019. Considerations in harmful algal bloom research and monitoring: perspectives from a consensus-building workshop and technology testing [Review]. Front Mar Sci. 6:399. English.
  • Ugya AY. 2015. The efficiency of Lemna minor L. in the phytoremediation of Romi stream: a case study of Kaduna refinery and petrochemical company polluted stream. J Appl Biol Biotechnol. 3(1):011–014.
  • Ugya AY, Hasan DB, Ari HA, Ajibade FO, Imam TS, Abba A, Hua X. 2020. Natural freshwater microalgae biofilm as a tool for the clean-up of water resulting from mining activities. All Life. 13(1):644–657. doi:10.1080/26895293.2020.1844307.
  • Ugya AY, Hua X, Ma J. 2019a. Biosorption of Cr3+ and Pb2+ from tannery wastewater using combined fruit waste. Appl Ecol Env Res. 17(2):1773–1787. doi:10.15666/aeer/1702_17731787.
  • Ugya AY, Hua X, Ma J. 2019b. Phytoremediation as a tool for the remediation of wastewater resulting from dyeing activities. Appl Ecol Env Res. 17(2):3723–3735. doi:10.15666/aeer/1702_37233735.
  • Ugya AY, Imam TS, Hua X, Ma J. 2019. The efficiency of Pistia stratiotes in the phytoremediation of Romi stream: a case study of Kaduna refinery and petrochemical company polluted stream. Int J Health Sci Res. 5(2):492–497.
  • Ugya AY, Imam TS, Li A, Ma J, Hua X. 2020. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem Ecol. 36(2):174–193. doi:10.1080/02757540.2019.1688308.
  • Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB. 2019. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact. 197:81–89. doi:10.1016/j.jenvrad.2018.12.002.
  • Wang B, Zhang R, Xu J, Qin S, Zheng J, Bian Y, Liu Y, Shen B. 2020. Effect of calcination temperature on light absorption and visible light photocatalytic activity of N doped TiO2 nano-crystalline. Sci Adv Mater. 12(3):449–453. doi:10.1166/sam.2020.3619.
  • Wei W, Ye C, Huang H-C, Yang M, Mei X-Y, Du F, He X-H, Zhu S-S, Liu Y-X. 2020. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability. J Ginseng Res. 44(4):627–636. doi:10.1016/j.jgr.2019.04.003.
  • Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, et al. 2015. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae. 49:68–93. doi:10.1016/j.hal.2015.07.009.
  • Xuemei W, Jingling L, Muyuan M, Zhifeng Y. 2010. Response of freshwater biofilm to pollution and ecosystem in Baiyangdian Lake of China. Procedia Environ Sci. 2:1759–1769. doi:10.1016/j.proenv.2010.10.188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.